RoMaNS – Robotic Manipulation for Nuclear Sort and Segregation

UoB, UK (lead) | Rustam Stolkin
Ales Leonardis
Marek Kopicki

TUDa, Germany | Jan Peters
Gerhard Neumann

CEA, France | Mathieu Grossard
Yvan Measson
et al.

CNRS, France | Paolo Robuffo Giordano
François Chaumette

NNL, UK | Jeffrey Kuo

€6.8million 3 year R&I project
(€6.4million EU, €400k UK)
1st May 2015 – 31st March 2018

www.h2020romans.eu

Coordinator: Rustam Stolkin

Co-funded by the Horizon 2020 Framework Programme of the European Union
Nuclear sort and segregation problem

- Cleanup of legacy nuclear waste *in the UK alone* is the largest environmental remediation project in the whole of Europe.
 - UK has 1.4 million cubic metres of intermediate level waste (ILW) alone.
 - At a single UK site (Sellafield), 69,600 cubic metres of ILW waste will have to be placed into 179,000 storage containers in near future.

- Much of this was stored decades ago, in containers with unknown (or partially known) contents and mixed contamination levels.
 - Old containers must be cut open.
 - Their contents must be examined, sorted and separated.
 - Highly contaminated waste must be extracted and placed into special new storage containers

Co-funded by the Horizon 2020 Framework Programme of the European Union
New BEP Testbed at NNL – beyond SOA in UK nuclear robotics

• BEP plant at Sellafield will take in legacy waste in skips, cut open containers, inspect/sort/segregate and re-package in newer, safer containers.
• 500 kg payload 6-axis KUKA robot arms
• Exciting – MAJOR investment by UK nuclear in advanced, modern robotics

But so far..

• No autonomy.
• No telepresence or haptics.
• No compliance or force control.
• Limited visualisation.
• Limited situational awareness.

Co-funded by the Horizon 2020 Framework Programme of the European Union
RoMaNS research activities

Plant-representative industrial test-bed

Advanced autonomy
Simulation and visualisation
Advanced tele-presence
New master-slave hardware
Main robotics and AI challenges

Huge variety of materials and objects
Presented in chaotic self-occluding heaps
Need for very complex manipulative actions

Co-funded by the Horizon 2020 Framework Programme of the European Union
Some tasters of the science being done

“Continuous machine learning” for vision

Deep learning for activity understanding

Learning from demonstration for grasping:
- Unknown objects
- Arbitrary shapes
- Partial views/point-clouds
- Deformable objects
- “Click-and-grasp” operator assistance tool

Reinforcement learning:
- Bi-manual “disentangling”
- Robust reactive grasping
- Semi-autonomous grasp learning

Co-funded by the Horizon 2020 Framework Programme of the European Union
Challenges – what doesn’t work yet?

- Object recognition and vision in highly cluttered scenes
- Semantic level scene understanding
- Learning of simple physics and object interactions
- High level activity recognition and understanding
- Grasping – beyond the level of simple geometry
How are we doing so far?

- Quite early to say – we are only 11 months into the project

- Some successes:
 - Advanced autonomous grasping of arbitrary shapes
 - Advanced visual tracking of deformable objects against severe clutter
 - Some new insights into variable autonomy and human-robot interaction

- Project designed to grow low TRL levels and progressively feed them into high TRL demonstrator as they mature.
Thankyou for your attention!

www.h2020romans.eu

r.stolkin@cs.bham.ac.uk

coming soon...