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Abstract—Gas distribution mapping is a crucial task in emis-
sion monitoring and search and rescue applications. A common
assumption made by state-of-the art mapping algorithms is that
only one type of gaseous substance is present in the environment.
For real world applications, this assumption can become very
restrictive. In this paper we present an algorithm that creates gas
concentration maps in a scenario where multiple heterogeneous
gas sources are present. First, using an array of metal oxide
(MOX) sensors and a pattern recognition algorithm, the chemical
compound is identified. Then, for each chemical compound a
gas concentration map using the readings of a Photo Ionization
Detector (PID) is created. The proposed approach has been
validated in experiments with the sensors mounted on a mobile
robot which performed a predefined trajectory in a room where
two gas sources emitting respectively ethanol and 2-propanol have
been placed.

I. INTRODUCTION

A gas distribution model can be defined as the truthful
representation of the observed gas distribution from a set of
spatially and temporally distributed measurement of relevant
variables, foremost gas concentration but also wind, pressure
and temperature [1].

State-of-the art algorithms for gas distribution mapping
assume that only a single chemical compound is released at
a given time. In order for the gas distribution algorithm to
be used in real world applications, this assumption has to
be removed. Another shortcoming in previous works on gas
distribution modelling is that the experimental validations are
usually performed with non calibrated sensors, such as metal
oxide (MOX) sensors. This means that the produced map do
not represent true concentrations.

In this paper we present the Multi Compound (MC) Kernel
DM+V algorithm. It addresses the problem of creating gas
distribution models for scenarios where more than one gaseous
analyte is present in the environment. The MC Kernel DM+V
is an extension of the Kernel DM+V algorithm proposed in [1].
By using response patterns to identify the different gaseous
compounds and true concentrations readings to generate the
gas distribution maps, the MC Kernel DM+V creates indepen-
dent distribution models, one for each compound identified in
the exploration area.

This paper is structured as follows: related work is discussed
in Section II, where we focus on the Kernel DM+V algorithm.
In Section III we derive the equations of the MC Kernel

DM+V algorithm. The experimental set-up is presented in
Section IV, followed by results and discussion in Section V.
We conclude this paper in Section VI, where we state our final
remarks and suggestions for future work.

II. RELATED WORK

Gas distribution modelling methods can be categorized
as model-based and model-free [2]. Model-based methods
derive the gas distribution maps using analytical equations
and inferring the parameters of the equations from sensor
measurements. The most common model-based approaches
are Gaussian plume models [3]–[5], Gaussian puff models [6],
Lagrangian particle models [7] and Computational Fluid Dy-
namics (CFD). A key limitation of model-based approaches,
such as CFD, is that in order to remain tractable they require
precise knowledge about the boundary conditions, which in
most cases are unknown.

Model-free approaches on the other hand, do no make
strong assumptions about the underlying functional form of
the gas distribution. Instead, they treat sensor measurements
as random variables and derive a statistical representation of
the observed gas dispersion from the measurements. Early
attempts on Model-free gas distribution mapping can be found
in [8] and [9], where distribution maps are generated by
interpolating the concentration readings from an array of
chemical sensors. Lilienthal and Duckett presented in 2004
the Kernel DM algorithm [10]. The authors used two dimen-
sional Gaussian functions to perform a spatial integration of
sensor measurements collected with a mobile robot. The gas
distribution model generated with this algorithm is given by
a grid map in which, each cell represents the estimation of
the gas distribution mean at a particular location. The key
contribution of this algorithm is that, the extrapolation of
the measurements allows to separate the underlying structure
of the gas distribution from the transient fluctuations of the
measurements.

The methods discussed above represent the gas distribu-
tion as a time constant structure and do not provide an
estimation about the fluctuations in the concentration. The
spatial structure of the distribution variance can provide useful
information about the gas distribution. For example, areas
of large concentration fluctuations can be correlated to the
proximity of a gas source [2]. In addition, the estimation of the



concentration fluctuations (i.e. predictive variance) provides
several advantages, such as a method to learn the meta-
parameters of the distribution modelling algorithm.

To the author’s best knowledge, only two methods that
compute the predictive variance have been proposed so far.
Stachniss and co-authors [11] proposed an approach that refor-
mulates the task of gas distribution modelling as a regression
problem. The authors used Gaussian Process Mixture (GPM)
models to deal with the specific properties of typical gas
distribution. The proposed method allows to represent the
rather smooth “background signal” and the areas of high
concentration using different components of the GPM. The
alternative approach to learn predictive variance maps is
the Kernel DM+V algorithm [1], which is presented in the
following subsection.

A. The Kernel DM+V algorithm
The Kernel DM+V aims to learn a predictive model

p(c,x|x1:n, c1:n) for a measurement c at a query location x
given a set of measurements c1:n taken at locations x1:n.

Kernel DM+V uses a uni-variate Gaussian weighting func-
tion N to represent the importance of a given measurement ci
obtained at location xi to model the gas distribution at a grid
cell k. Thus, a weight map Ω and a weighted measurement
map C are computed as follows:

Ω(k) =

n∑
i=1

N (|xi − x(k)|, σ) (1a)

C(k) =

n∑
i=1

N (|xi − x(k)|, σ) · ci (1b)

were x(k) represents the center of a given cell k, and
σ denotes the kernel’s width. A confidence map α(k), that
depends on the number and proximity of measurements used
to compute the concentrations at each cell, is computed as
follows:

α(k) = 1− e−(Ω(k))2/σ2
Ω (2)

α(k) depends on three parameters, namely the kernel width σ,
the size of the grid cells gs and the scaling factor σ2

Ω. α(k) is
used to compute the mean concentration estimate c(k), which
is given by

c(k) = α(k) · C
(k)

Ω(k)
+ {1− α(k)} · c0, (3)

where c0 is an initial estimate of the mean concentration for
locations where there is not sufficient information from nearby
readings, which is indicated by a low value of α(k).

The variance distribution map v(k) is computed from vari-
ance contributions integrated in a temporary map V (k) as
follows:

V (k) =

n∑
i=1

N (|xi − x(k)|, σ) · (ci − ck(i))2,

v(k) = α(k) · V
(k)

Ω(k)
+ {1− α(k)} · v0.

(4)

The term k(i) represents the cell closest to the measurement
point xi and ck(i) is the mean prediction of the model for cell
k. c0 and v0 represent the initial estimates of the distribution
mean and variance respectively.

III. THE MULTI COMPOUND (MC) KERNEL DM+V
ALGORITHM

The MC Kernel DM+V algorithm uses true gas concen-
tration measurements ci (e.g. from a PID) to generate the
distribution models and response patterns ri (e.g. from an
e-nose) to classify among gases. In addition to the mean
distribution and variance maps, MC Kernel DM+V returns
a classification map for each of the detected compounds.
These classification maps can be interpreted as the probability
of detecting a compound l at a given query location in the
explored area.

In the MC Kernel DM+V algorithm, a classifier uses the
response patterns ri (measured at locations xi) to compute
a vector Pi = [p

(i)
1 , · · · , p(i)

l ]T :
∑L
l=1 p

(i)
j = 1, each p

(i)
j

denotes the posterior probability of a given measurement ri
of belonging to class l.

The classification maps d(k)
l are then computed by spatially

interpolating the posteriors vector Pi predicted for each mea-
surement point. The spatial extrapolation is calculated using
equations 1 to 3 and using 1/l as a prior estimate for those
regions in α with a low confidence value.

The predictive mean distribution maps are computed using
equations 5a to 5c. The posterior probabilities Pi are included
in the computation of C(k)

l by introducing the term ψil , which
is a weighting function that models the importance of the
measurement i for the mean distribution map of the compound
l, given the posterior p(i)

l . Cl0 is the initial mean estimate for
each class and it is computed according to equation 5b.

C
(k)
l =

∑n
i=1

[
N (|xi − xk|, σ) · ψil · ci

]∑n
i=1

[
N (|xi − xk|, σ) · ψil

] (5a)

Cl0 =

∑n
i=1

[
ψil · ci

]∑n
i=1 ψ

i
l

(5b)

c
(k)
l = α(k) · C(k)

l + (1− α(k)) · Cl0 (5c)

Similarly, an extension to include Pi to the computation of
the predictive variance map is presented in equations 6a to 6c.

V
(k)
l =

∑n
i=1

[
N (|xi − xk|, σ) · ψil · (ci − c

(k(i))
l )2

]
∑n
i=1

[
N (|xi − xk|, σ) · ψil

] (6a)

Vl0 =

∑n
i=1

[
ψil · (ci − c

(k(i))
l )

]
∑n
i=1 ψ

i
l

(6b)

v
(k)
l = α(k) · V (k)

l + (1− α(k)) · Vl0 (6c)



IV. EXPERIMENTAL SET-UP

A. Robotic platform

The robotic platform shown in Figure 1 was used in the
experiments. A Pioneer P3-DX (MobileRobots) was equipped
with an e-nose of six commercially available MICS e2v
MOX sensors and a ppbRAE 3000 Photo Ionization Detector
(PID). The e-nose provides the input to a pattern recognition
algorithm that performs gas identification, while the PID pro-
vides calibrated gas concentration readings once the chemical
compound is known.

Fig. 1. The P3-DX robotic platform.

B. Experimental scenario

Data collection was conducted in the 5 m × 5 m × 2 m
closed room shown in Figure 1. Although no artificial airflow
was induced, a weak circulating airflow field (0.01−0.03 m/s)
was formed in the room by natural convection. Ethanol and
2-propanol vapours were used as detection targets, and were
released from two tubes at a constant flow rate (0.2 l/min).
The robot was programmed to follow a spiral trajectory,
stopping for 30 s at regularly spaced way points for data col-
lection. Four repetitions were conducted with a single source
inside the room (one for each analyte), and two repetitions
were conducted with both analytes at the same time, with
separations of 0.5 m and 1.5 m between them.

C. Parameter selection

We used a Multi Variate Relevance Vector Machine
(MVRVM) [12] in order to discriminate between ethanol,
propanol, and fresh air, labelled as L = [1, 0, 0], L = [0, 1, 0],
and L = [0, 0, 1] respectively. MVRVM is an extension to the
Relevance Vector Machine (RVM) classifier, a sparse Gaussian
process originally proposed by Tipping [13]. The MVRVM
already proved to be successful for gas discrimination in [14].

Considering that the response r of the e-nose is given by a
30 s six dimensional time series, we opted for a kernel from
the family of autoregressive kernels for time series proposed
by Cuturi in [15]. These kernels are parametrized by an
order o and a constant α. We trained the MVRVM classifier
using a dataset D = {r,L} composed by the way point
measurements obtained in the single source experiments. The
optimal combination (ob, αb) was selected from the vectors
α = [0.1, 0.2, · · · , 0.9] and o = [2, 4, · · · , 30] using cross
validation. Half of the data points were used for training

and the remaining half for testing (Dtest). The classifier’s
performance was evaluated using the following loss function:

floss(Dtest) =

ntest∑
i=1

l∑
j=1

Li[j] · log(pi[j])∑ntest

k=1 Lk[j]
, (7)

where ntest is the number of elements in the testing set,
l is the number of classes and pi is the posterior probability
vector. For the dataset D the pair (ob, αb) that minimizes floss
was found to be (16, 0.75).

While it is possible to learn the mapping parameters gs and
σ from the data using the Negative Log Predictive Density
(NLPD) [1], we selected gs and σ in a systematic way. The
rationale behind this decision is that, in the case of multiple
source experiments, there is no ground truth to evaluate
(gs, σ). Thus, gs and σ were set to 0.05 m and 0.35 m
respectively.

The weighting function ψil is shown in in Figure 2. It
depends on the posteriors pil and piair. Weight values closer to
1 will be given to those samples where the label is predicted
as l or as air with high confidence. On the other hand, ψil will
tend to zero when the classification confidence is low.

Fig. 2. Weighting function ψ. The importance assigned to a given mea-
surement i will depend on its posterior probability p

(i)
l and the posterior

probability p(i)air .

V. RESULTS

The obtained classification and concentration maps can be
seen in Figures 3(a) to 3(c). Due to space constraints, in this
paper we present only the results from the experiment where
the separation between gas sources was 0.5 m. The classifica-
tion map is presented in the form of a maximum a posteriori
plot. It can be noticed that the probability of detecting an
analyte is higher at locations where neighbouring data samples
are classified as l with high confidence. At the borders of the
exploration area, the confidence level drops to 33%, which
intuitively says that there is not enough information to make
a consistent prediction due to the lack of the neighbouring
measurements.

The predictive mean concentration map in Figure 3(b) was
generated by combining the individual mean concentration
maps for each substance masked with the classification maps.
While we do not have ground truth to evaluate the accuracy
of the distribution maps, it can be noticed that the mean



(a) (b) (c)

Fig. 3. Gas distribution maps for the experiment where the gas sources were separated by 0.5 m. The classification map is given in the form of a maximum
a posteriori plot (a). The mean map is shown in (b) and the variance map is shown in (c). In all Figures, the black dashed lines denote the robot’s exploration
path. The likelihoods, concentrations and variances of ethanol, 2-propanol and fresh air are shaded in green, red and blue respectively. The actual locations of
the ethanol and 2-propanol sources are denoted by green and red circles respectively. The concentration measurements are given in parts per million (ppm).

distribution maps are consistent, since high concentration
values are predicted at neighbouring areas around the way
points where high average concentration was measured for
each analyte (denoted by black crosses). The variance map in
Figure 3(c) highlights areas near the actual location of the gas
sources providing in this way, valuable information that could
be used for the task of gas source localization.

VI. CONCLUSIONS

In this paper we presented an approach that extends the
Kernel DM+V algorithm by considering the uncertainty in
the gas discrimination for the computation of multiple gas
distribution models. Broadly speaking, our algorithm fuses the
information coming from two different inputs, namely the gas
concentration, reported by a PID and the uncertainty in the gas
identification, computed from the sensor responses from an e-
nose. The MC Kernel DM+V algorithm produces l different
gas distribution models, one for each detected analyte. We
tested the proposed algorithm with data collected with a
robotic platform inside a closed room, where two different gas
sources were placed together. The obtained results show con-
sistent mean distribution maps where plume shaped structures
predict high concentration areas around measurement points
where high average concentrations were sensed. In addition,
the variance maps implicitly predicted the gas source location
by highlighting areas around the actual sources.

Future work will aim to extend the proposed algorithm
to construct models where mixture of gases are considered.
This would require to train classifiers to discriminate between
mixtures and pure samples. Also as a future work, it is
required to develop new quantitative evaluation approaches
for gas distribution models of multiple analytes. The MC
Kernel DM+V algorithm can be extended to learn mapping
parameters from the data itself. These learned parameters
have to be evaluated not only in their accuracy to predict
concentration values, but also in their capabilities to predict
class labels.
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