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Abstract— Coordinating multiple autonomous ground vehi-
cles is paramount to many industrial applications. Vehicle
trajectories must take into account temporal and spatial re-
quirements, e.g., usage of floor space and deadlines on task
execution. In this paper we present an approach to obtain sets of
alternative execution patterns (called trajectory envelopes) which
satisfy these requirements and are conflict-free. The approach
consists of multiple constraint solvers which progressively refine
trajectory envelopes according to mission requirements. The
approach leverages the notion of least commitment to obtain
easily revisable trajectories for execution.

I. INTRODUCTION

Coordination of multiple Autonomous Ground Vehicles
(AGVs) in industrial applications is still largely performed
off-line through manually synthesized traffic rules and/or
local trajectory adjustments during execution. This entails
several drawbacks, among which the lack of provably correct
solutions and limited flexibility with respect to changed
mission requirements, delays, or vehicle failures.

In recent years, several approaches have been proposed
to address these problems. Algorithms such as M∗ [1], an
extension of the classical A∗ to multi-robot systems, and the
work of Luna and Bekris [2], whose focus is a new com-
putationally efficient and complete method for multi-robot
path planning, are recent examples of promising theoretical
results (albeit limited to path planning). A system for the
coordination of large multi-robot teams has been presented
by Kleiner et al. [3]. However, in this work, the agents are
assumed as moving on a grid, and the local motions are
calculated for each robot independently from the motions of
other robots.

Other computationally efficient approaches to multi-robot
coordination leverage the assignment of pre-defined prior-
ity levels to different robots [4], or the use of a merit-
based token, which is passed among agents to decide which
should take initiative [5]. Both approaches can be seen as
improved versions of hand-coded traffic rules, but cannot
ensure deadlock-free situations.

In this work, we present an approach to multiple non-
holonomic vehicle coordination, which is robust to delays
and changed mission requirements. The approach consists
of multiple constraint solvers which progressively refine
trajectories according to spatial and temporal requirements.

This work is partially funded by the Swedish Knowledge Foundation
(KKS) under project “Safe Autonomous Navigation” (SAUNA).

The approach leverages the notion of least commitment to
obtain easily revisable trajectories for execution which are
deadlock- and collision-free.

II. A CONSTRAINT-BASED APPROACH

In this paper, we deal with vehicles subject to nonholo-
nomic constraints. In order to simplify the notation, we
will adopt a model of a (rear-wheel drive) car-like vehicle,
although the presented approach can be used in combination
with other types of systems (e.g., articulated vehicles). The
kinematic model of a car-like vehicle is given by1

q̇ = f(q,v) = (v cos(θ), v sin(θ),
v

l
tan(φ), ω), (1)

where (x, y) are the coordinates of the middle of the rear
wheel-axis (which is our reference point for the vehicle) in
the world frame, θ is the angle of the platform (in the world
frame), φ is the steering angle, and l is the distance between
the middle point of the front and rear wheel axes [6]. q =
(x, y, θ, φ) ∈ R4 and v = (v, ω) ∈ R2 denote the state and
control vector, respectively. We will use (·)(j) to indicate that
variable (·) is associated to the j-th vehicle. When there is
no ambiguity, the superscript (j) will be omitted.

Let p(j) : [0, 1] → R2 denote a path for the reference
point of vehicle j, parametrized using its arc length σ. Hence,
p(j)(0) denotes the starting position, and p(j)(1) denotes the
final position of the reference point. Given a time history
along the path σ = σ(t), we refer to p(j)(σ) as a trajectory.

Definition 1: A trajectory p(j)(σ) is feasible if

• it can be obtained from the evolution of (1) for suitable
initial conditions x(0), y(0), θ(0), φ(0) and bounded
control inputs v ≤ v ≤ v and ω ≤ ω ≤ ω

• the steering angle is bounded (φ ≤ φ ≤ φ)
• for every pose of the vehicle along the path, its geo-

metric model does not intersect any known obstacle.

In other words, a feasible trajectory is such that perfect
execution in nominal conditions can be achieved in the
presence of bounds on the steering angle and obstacles in
the environment. We use (·) and (·) to denote lower and
upper bounds on (·).

1For conciseness of notation, we will use x = (x1, . . . , xn) to denote
the elements of a column vector x.



A. From Trajectories to Trajectory Envelopes

Since vehicles share a common floor space, coordination
is necessary to ensure the absence of collisions and dead-
locks. Current practice in both industry and research is to
assume that trajectories for all vehicles are computed (either
on-line or off-line) and committed to before coordination
occurs. This early commitment thus implies that collisions
and deadlocks are dealt with locally, e.g., delaying one
vehicle to avoid a collision, or following pre-set traffic
rules to avoid deadlocks. The locality of these adjustments
to vehicle trajectories entails that overall requirements of
the fleet of vehicles cannot be guaranteed. Our approach
aims to overcome this difficulty by leveraging constraint-
based techniques that calculate the necessary requirements on
trajectories which avoid collisions and deadlocks. The overall
strategy is to inform the controller of each vehicle about
these requirements so that it can synthesize control actions
that are guaranteed to result in collision- and deadlock-free
execution. This is achieved through the use of trajectory
envelopes, which are essentially collections of spatial and
temporal constraints on p(j) and σ(j)(t).
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Fig. 1. A trajectory envelope for vehicle j consisting of two sets
of polyhedral and temporal constraints (the θ and φ dimensions of
the vehicle’s state are omitted).

More specifically, a spatial envelope for vehicle j is a set
of n sets of polyhedral constraints S(j) = {S(j)

1 , . . . ,S(j)
n }

on the state variables of the j-th vehicle. The i-th set of
linear constraints S(j)

i is defined as the intersection of finitely
many half-spaces. Fig. 1 depicts an example of constraints on
(x, y). To each S(j)

i we associate a set of temporal constraints
T (j)
i in the form

`
(j)
i ≤ e

(j)
i − s

(j)
i ≤ u

(j)
i (2)

`
(j)
i,i+1 ≤ e

(j)
i − s

(j)
i+1 ≤ u

(j)
i,i+1, (3)

where s(j)
i (e(j)

i ) denotes the time in which the vehicle’s pose
begins (ceases) to be within the polyhedral constraints S(j)

i ,
and `

(j)
i , `

(j)
i,i+1, u

(j)
i , u

(j)
i,i+1 ∈ R are fixed lower and upper

bounds. Hence, (2) defines bounds on when the reference
point of the vehicle is within the convex region specified by
S(j)
i , while (3) defines bounds on when the reference point

is within the spatial overlap between S(j)
i and S(j)

i+1 (which
is a convex set as well).

We can, at this point, define a trajectory envelope for the
j-th vehicle as E(j) =

(
S(j), T (j)

)
, where

• S(j) =
⋃
i S

(j)
i is the spatial envelope of vehicle j, and

• T (j) =
⋃
i T

(j)
i is the temporal envelope of vehicle j.

A trajectory envelope is thus a set of spatial and temporal
constraints on the position of a vehicle’s reference point. E(j)

contains p(j)(σ) if p(j)(σ(t)) ∈ S(j)
i for all t ∈ T (j)

i . The
problem of finding s(j)

i and e(j)
i (for all i and j) that satisfy

the temporal constraints T = {T (1), . . . , T (N)} is a Simple
Temporal Problem (STP) [7] with variables

t =
⋃
i,j

{s(j)
i , e

(j)
i }.

A STP admits many solutions, each of which defines the
amount of time e(j)

i −s
(j)
i during which vehicle j’s reference

point should be within the polyhedral constraints S(j)
i . It is

convenient to define a discretized version of these durations,
which we refer to as the discrete trajectory envelope of
vehicle j, that is, a sequence of polyhedral constraints

〈S(j)
I1
,S(j)
I2
, . . . ,S(j)

ID
〉,

where I is a sequence of indexes of constraints. For example,
suppose that a solution to the STP is (refer also to Fig. 1
assuming i = 1)

s
(j)
1 = 7, e

(j)
1 = 13, s

(j)
2 = 10, e

(j)
2 = 15.

This solution implies that vehicle j’s reference point will be
in S(j)

1 for e(j)
1 − s

(j)
1 = 6 time units, that it will be in S(j)

2

for e(j)
2 −s

(j)
2 = 5 time units, and that for e(j)

1 −s
(j)
2 = 3 time

units it will be in both polyhedra. Assuming a discretization
of these durations with ∆t = 1, we obtain the sequence

I = 〈1, 1, 1, {1, 2} , {1, 2} , {1, 2} , 2, 2〉.

Hence, the reference point of vehicle j has to satisfy S(j)
1

at the first three discrete times, both S(j)
1 and S(j)

2 at the
following three discrete times, and S(j)

2 at the last two
discrete times.

Note that a solution of this STP can be found in
Θ((2 |S|)3) with the Floyd-Warshall all-pairs-shortest-paths
algorithm [8], where S = {S(1), . . . ,S(N)}.

B. Problem Definition

The problem of finding a particular path p(j) in the spatial
envelope of vehicle j is a Constraint Satisfaction Problem
(CSP) [9]. As we have seen, the problem of finding a time
profile σ(j)(t) for this path is a STP whose constraints are
the temporal envelope of vehicle j. Together, the solutions
of these two CSPs constitute one trajectory for vehicle j.
As mentioned, we wish to avoid committing to specific
trajectories until a vehicle’s controller has to synthesize
control signals to actually displace the vehicle. The method
we propose in this paper relies on the use of several solvers
which can reason about the properties of trajectory envelopes



without having to commit to one particular trajectory. The
first of these properties is feasibility:

Definition 2: A trajectory envelope E(j) =
(
S(j), T (j)

)
is

feasible if it contains at least one feasible trajectory p(j)(σ).

The feasibility of one trajectory envelope does not depend
or alter the feasibility of other vehicles’ trajectory envelopes.
However, since vehicles share the same floor space, it is
important that these trajectory envelopes do not overlap in
both time and space (which would imply the possibility of
two vehicles colliding).

Definition 3: A conflict set is a set of indexes C that
contains all pairs (i(j), k(m)) for which there is both spatial
and temporal overlap, or formally

S(j)
i ∩ S

(m)
k 6= ∅ ∧ (4)[

s
(j)
i , e

(j)
i

]
∩
[
s

(m)
k , e

(m)
k

]
6= ∅. (5)

Definition 4: A set of trajectory envelopes E =
⋃
j E(j) is

feasible if C = ∅ for some solution t to the STP.

The problem of finding an overall set of trajectory en-
velopes that is feasible can be understood as an optimiza-
tion problem whose decision variables contain the spatial,
temporal and control variables (over all vehicles). Note that
a solution to this problem is deadlock-free by definition2

as constraints (2) and (3) imply that no feasible trajectory
can take infinite time, thus eliminating the possibility of a
temporal profile which leads to a deadlock.

Finding a set of feasible trajectory envelopes requires
exponential time, as it requires resource scheduling with
maximum time-lags3 [10]. We propose a decoupled approach
to solve this problem, in which we leverage dedicated
algorithms to tackle the spatial, temporal and floor-contention
problems separately. These algorithms are centralized, and
iteratively refine the trajectory envelopes so as to remove
the possibility of collisions and deadlocks, as well as those
trajectories that do not satisfy the spatial and temporal
constraints. De-centralized approaches to some or all of these
sub-problems are possible, however, in order to guarantee
global feasibility with respect to temporal and spatial con-
straints along with the absence of collisions and deadlocks,
a distributed approach would also require exponential com-
putation, either in the form of an exponential number of
messages or of exponential message size [11]. Note also that
while polynomial-time distributed algorithms can be used
to guarantee safe navigation (see, e.g., [12]), these cannot
enforce adherence to temporal constraints like deadlines.

In order to enforce the absence of possible collisions and
deadlocks in the trajectory envelopes of the fleet, several
strategies are possible. One is to refine only the spatial
envelopes of spatially and temporally intersecting trajectory

2A deadlock, in our case, is a situation in which two or more vehicles
are each waiting for the other to exit a polygon, and thus neither ever does.

3Floor space can be seen as a shared resource which is concurrently used
by the vehicles when they traverse a polygon.

envelopes so as to eliminate condition (4). Another possibil-
ity is to add temporal constraints that eliminate condition (5).
The third option is to perform one or both refinements,
depending on some particular heuristic indicating the impact
of the refinement on the feasible trajectories. In this paper,
we explore the second option. Specifically, we assume that
an initial set of trajectory envelopes E is available, that the
spatial envelopes S are fixed for each vehicle, and then
refine the temporal envelopes by adding constraints Ta to
T to obtain a feasible set Ea = (S, T ∪ Ta) of trajectory
envelopes.

Definition 5: Given the models of N vehicles and E , a
trajectory scheduling problem consists of finding Ta such
that Ea is feasible.

Or in other words, the trajectory scheduling algorithm re-
solves concurrent use of floor space by altering when differ-
ent vehicles cannot occupy spatially overlapping polyhedra.
Crucially, a solution to the trajectory scheduling problem
does not represent a commitment to a particular assignment
of times to t, rather a set of additional constraints Ta on
these times such that collisions are avoided.

Our approach is reminiscent of time scaling algorithms
for multi-robot systems [13], [14], in which the temporal
profiles of nominal trajectories are adjusted in order to avoid
collisions and to account for dynamic properties. Our ap-
proach is similar in that it focuses on temporal adjustments,
however, our approach also guarantees adherence to exter-
nally imposed temporal constraints, and does not commit
to a specific path until execution time. This allows vehicle
tracking controllers to deviate both in time and in space from
the nominal trajectory within the bounds prescribed by the
trajectory envelopes.

III. DEFINING SPATIAL ENVELOPES

It is often the case in industrial AGV fleet deployment
scenarios that paths are given. This is the case, for instance,
in several warehouse and port automation domains, where
autonomous forklifts are constrained to navigate along pre-
defined paths, as well as in underground mines, where fixed
trajectories are recorded along tunnels [15]. If paths are not
completely pre-defined, it is likely that navigable areas are
given, and vehicle paths are planned within them.

Delimiting areas of the floor that are navigable is effec-
tively one way to specify the spatial envelope S of the fleet of
vehicles. S can be given, or it can be calculated starting from
an initial reference path for each pair of destinations in the
map. In this paper, we employ the latter approach. Specifi-
cally, we use a lattice-based path planner to compute optimal
or highly-optimized paths between destinations (where each
node of the lattice represents a pose of the vehicle in the
form (x, y, θ)). The cost function is based on the distance
between nodes (along the edges) of the lattice, scaled by
a cost factor that penalizes backwards and turning motions.
These paths can be seen as an initial, very tight collection
of polyhedra, which is then relaxed so as to obtain a larger
spatial envelope for each vehicle.



The planner uses a set of pre-defined, kinematically feasi-
ble motion primitives, which are repeatedly applied to obtain
a directed graph which covers the state space. The graph is
then explored using A∗ [16], or one of its most efficient
anytime versions, ARA∗ [17], which can provide provable
bounds on sub-optimality. Effective heuristic functions [18],
as well as off-line computations for collision detection, are
employed to speed up the exploration of the lattice. Our
approach is inspired by existing lattice-based path planners
[19], [20], successfully used in real world applications. All
paths are generated such that there exists a time profile that
yields feasible trajectories (see Definition 1).

Once a reference path is obtained for each vehicle, its
spatial envelope is calculated by sampling it with a given
∆σ (inversely proportional to the curvature of the path)
and calculating the polyhedron S(j)

i , enclosing the sampled
point (xi, yi), by accounting for possible intersections of
a bounding box of the vehicle and obstacles from the
environment. The detailed description of the heuristics we
use is outside the scope of this paper.

IV. DEFINING TEMPORAL ENVELOPES

As stated by Definition 5, the trajectory scheduling prob-
lem consists of finding appropriate temporal constraints
such that no collisions or deadlocks occur (i.e., the set
of envelopes Ea is feasible). The spatial envelopes S of
the vehicles are either given or obtained as a relaxation
of reference paths as described in Section III, and these
constraints are not subject to change. Conversely, the process
of determining the temporal envelopes T ∪ Ta is split into
two parts.

First, an initial temporal envelope T (j) is calculated for
each vehicle. These envelopes contain the constraints (2)
and (3). The resulting set of constraints T constitutes a
STP which admits, by construction, at least one solution
(assignment of t). Note, however, that this solution may
not be conflict-free, because there is no constraint in T
that disallows C 6= ∅. A second step is thus necessary,
which (through scheduling) determines constraints Ta that
lead to refined temporal envelopes T ∪ Ta. In the following
paragraphs, we detail both these steps.

A. Initial Temporal Envelope Definition

Here, we describe our heuristics for forming the lower and
upper bounds in (2) and (3). We assume that each spatial
envelope S(j) has an associated reference path. We focus on
vehicle j, hence the superscript (j) is omitted.

Let Li denote the length of the path segment fully con-
tained within the projection of polyhedron i on (x, y) (which
we call polygon i, see Fig. 1). Furthermore, let Li−1,i denote
the length of the path segment fully contained within the
intersection of polygons i− 1 and i. The recursion

sfast
i = efast

i−1 −
Li−1,i

v
, efast

i = sfast
i +

Li
v

sslow
i = eslow

i−1 −
Li−1,i

v
, eslow

i = sslow
i +

Li
v

defines [sfast
i , efast

i ] ([sslow
i , eslow

i ]) as the earliest (latest) possi-
ble entry and exit times for polygon i. For i = 1 we assume
sslow
i = sfast

i = 0. The lower and upper bounds of (2) and (3)
are thus obtained as

`i = efast
i − sslow

i , ui = eslow
i − sfast

i ,

`i,i+1 = efast
i − sslow

i+1, ui,i+1 = eslow
i − sfast

i+1.

B. Refining Temporal Envelopes through Scheduling

In order to prune out of E those trajectories that lead to
collisions, we must add more temporal constraints to T so
as to eliminate overlapping temporal intervals corresponding
to overlapping spatial constraints.

Function ScheduleTrajectories(E): success or failure

static Ta = ∅1
form C2
while C 6= ∅ do3

c← Choose(C, Hc) // c ∈ C is a conflict (Definition 3)4

Rc =
{
s
(j)
i ≥ e

(m)
k , e

(j)
i ≤ s

(m)
k

}
5

while Rc 6= ∅ do6
r ← Choose(Rc, Hr)7
Rc ←Rc \ r // remove constraint r from Rc8
Ta ← Ta ∪ r // add constraint r to STP9
if STP is consistent then10

if ScheduleTrajectories(Ea) = failure then11
Ta ← Ta \ r12

else return success13

else Ta ← Ta \ r14

return failure15

return success16

Finding a set of additional constraints that make Ea
feasible can itself be cast as a CSP. The variables of this
CSP are conflict sets, i.e., pairs of polygons that intersect and
whose associated temporal variables may overlap (see Defini-
tion 3). The values of these variables are temporal constraints
that eliminate this temporal overlap (resolving constraints).
Algorithm ScheduleTrajectories() solves the trajec-
tory scheduling problem with a standard CSP backtracking
search. It is inspired by the Earliest Start Time Approach
(ESTA) precedence-constraint posting algorithm [21] for
resource scheduling. The algorithm starts by collecting all
pairs of conflict sets (line 2). The assessment of condition (5)
(possible temporal overlap) is performed by comparing the
Earliest Time (ET) solutions of the STP. In other words,[

s
(j)
i , e

(j)
i

]
∩
[
s

(m)
k , e

(m)
k

]
6= ∅ if

max
(
s

(j)
i , s

(m)
k

)
≤ min

(
e

(j)
i , e

(m)
k

)
, (6)

where the lower bound of the time points are determined by
the constraints T ∪ Ta in the STP.

As usual in CSP search, the variables (conflict sets)
are ordered according to a most-constrained-first variable
ordering heuristic. In our case, Hc gives preference to pairs
of polygons that are spatially closer to other conflicting pairs
(the rationale being that it is better to fail sooner rather
than later so as to prune large parts of the search tree).



Once a conflict is chosen (line 4), its possible resolving
constraints are identified (line 5). These are the values of the
CSP’s variables, and each is a temporal constraint that would
eliminate the temporal overlap of intersecting polygons. Note
that since conflict sets are pairs of indexes, there are only
two ways to resolve the temporal overlap, namely imposing
that the end time of polyhedron S(j)

i is constrained to
occur before the start time of polyhedron S(m)

k , or vice-
versa. Again as is common practice in CSP search, the
value (resolving constraint) to attempt first is chosen (line
7) according to a least constraining value ordering heuristic.
Hr in our case leverages temporal slack to choose the
ordering that least affects the temporal flexibility of the time
points [21]. The algorithm then attempts to post the chosen
resolving constraint into the STP (line 9). If the STP is
consistent, then the procedure goes on to identify and resolve
another conflict through a recursive call (line 11). In case of
failure (line 14), the chosen resolving constraint is retracted
from the STP and another value is attempted.

The ScheduleTrajectories() algorithm is com-
plete, as it performs a systematic search in the space of
possible sequencing constraints for conflicting polygons.
Thus, it will return a set of deadlock- and conflict-free
trajectory envelopes if and only if such a set exists.

V. OBTAINING DISCRETE TRAJECTORY ENVELOPES

Once trajectory scheduling has taken place, we are left
with a fully propagated and consistent STP, i.e., one in
which the bounds of all time points s(j)

i and e(j)
i have been

updated to reflect the constraints T ∪ Ta. From this STP,
we can obtain the ET solution t1, that is, the solution in
which all variables are assigned to their lower bounds s(j)

i .
This solution satisfies all constraints T ∪ Ta. Since it is the
ET solution, it is therefore also conflict-free. Note that this
solution defines the fastest possible trajectory for all vehicles
that is conflict free.

We can obtain a further solution t2 by propagation, i.e.,
by adding the constraint s(j)

1 ≥ s
(j)
1 + ∆t, where s

(j)
1 is

the value of s(j)
1 in the ET solution of the STP. We can

obtain a total of P solutions by repeating this procedure
P times. Although the ET solution satisfies all constraints
in T ∪ Ta, the addition of the constraints above may have
generated a conflict that couldn’t have been detected with
the ET assessment (6) performed in the previous invocation
of ScheduleTrajectories(). This is because conflicts
are identified using the ET solutions of the STP (6). Hence,
the scheduler must be re-invoked P −1 times to check if the
addition of the new constraints entails a new conflict.

In practice, re-scheduling rarely finds new conflicts. This
is because a previously unseen conflict set appears only if
some polyhedron is subject to “tighter” temporal constraints
than others (e.g., externally imposed slow-down areas). The
overhead of checking for conflicts is O(|S|2), as conflicts
involve pairs of polygons. Since Floyd-Warshall can be run
incrementally in Θ((2 |S|)2) [7], we can typically obtain P
discrete trajectory envelopes for all vehicles with a quadratic
computational overhead.

We leverage these properties of the STP to obtain a set of
P discrete trajectory envelopes (see Section II-A) for each
vehicle j. Note that as long as each vehicle follows the p-
th discrete trajectory envelope in its set, no collisions will
occur. However, if one vehicle’s controller must deviate from
the p-th discrete trajectory and selects to follow the p′-th,
then all vehicles must adhere to their p′-th discrete trajectory
envelope. For this reason, we centralize the allocation of
discrete trajectory envelopes to vehicles, as described below.

A. Selecting the Current Discrete Trajectory Envelope

Once P discrete trajectory envelopes are sampled out of
Ea, it is the task of a central trajectory envelope selector
to dispatch these envelopes to the vehicle controllers. In
addition, the trajectory envelope selector also instructs all
vehicles to follow a reference trajectory pr(σ) that lies within
their discrete trajectory envelope pe ∈ {1, . . . , P}.

The selection of the current discrete trajectory envelope
pe is revised as vehicles execute their missions. As we will
see, revision of the current pe can be performed based on
information that is fed back to the centralized trajectory
envelope selector from individual vehicle controllers. In
essence, the controller for vehicle j feeds back J (j)

p , which
is a measure of the tracking performance of vehicle j within
the discrete trajectory envelope p. If a discrete trajectory
envelope p for vehicle j is found to be infeasible by the
controller due to the current state of the vehicle, J (j)

p =∞.
Based on these measures, the trajectory envelope selector can
periodically revise the current trajectory envelope index and
inform all vehicle controllers of the new global choice. More
formally, the trajectory envelope selector computes

pe ∈ arg min
p∈{1,...,P}

g(J (1)
p , . . . , J (N)

p ).

In this way, by analyzing the tracking performance of all
vehicles, the trajectory envelope selector can make informed
decisions as to which index pe represents the globally best
set of discrete trajectories to be followed by all vehicles.

The particular form of the function g which is minimized
is the topic of future work — in our present work, we assume
that the fastest set of feasible trajectories is selected.

VI. TRACKING CONTROLLER

In this section we present the tracking controller that
is used in combination with the trajectory scheduler and
trajectory envelope selector. We focus on the controller for
the j-th vehicle and drop the superscript (j) for compactness.

Recall that an underlying assumption of our trajectory
scheduling algorithm is that the reference point of the vehicle
stays within 〈S(j)

I1
,S(j)
I2
, . . . ,S(j)

ID
〉. In order to explicitly

account for such state constraints, as well as for constraints
on the control variables, we use an embedded optimization
based approach. Compared to classical tracking controllers
(which do not account explicitly for constraints e.g., see [6]),
this approach is computationally more expensive. However,
polyhedral constraints (such as those used to define trajectory
envelopes here) can be handled very efficiently. Depending



on formulation and underlying assumptions, it is possible
to compute control actions in the millisecond (or even
microsecond) range.

Model Predictive Control (MPC) is one of the most
successful embedded optimization schemes. It has been used
in a wide variety of industrial applications [22]. In fields
that involve linear and/or rather slow systems, like the ones
usually encountered in the chemical process industry, MPC
is considered a mature technique. The application of MPC
to fields that involve highly nonlinear, hybrid, or very fast
processes is still an active research topic (e.g., the use of
MPC for walking motion generation is discussed in [23]).
The application of MPC in the context of tracking a reference
trajectory using a nonholonomic vehicle has been discussed
in [24], [25], [26], [27], [28].

The basic idea behind MPC is to use a model of the
process of interest (which in our case is the evolution of the
state of a car-like vehicle), and compute a sequence of control
actions (at each control sampling time) that optimize a given
objective, while satisfying input and state constraints, over
a given time interval (referred to as preview horizon). After
the state is transferred as a result of the first control action
(in the sequence), a new optimization problem is formulated
and solved (giving a new sequence of actions, from which
again only the first one is executed).

As discussed in Section V, each vehicle is assigned P
sequences of indexes {Ip}, p ∈ {1, . . . , P} (Ip defines the
p-th discrete trajectory envelope). It is also given the current
index pe of the discrete trajectory envelope that should be
followed. The tracking controller has two purposes. One is
to compute the control actions for the vehicle that achieve a
close enough execution compared to the reference trajectory.
associated to the pe-th discrete trajectory envelope. Its second
purpose is to provide a measure of how well the vehicle can
perform on other discrete trajectory envelopes. As mentioned
in Section V-A, a centralized trajectory envelope selector
takes this information into account when choosing pe. Note
that both the trajectory scheduler and the MPC perform
redundant computation – the former pre-computes trajectory
envelopes which are all guaranteed to be conflict-free, the
latter evaluates them to facilitate a global selection of “good”
trajectory envelopes for all vehicles, i.e., an index pe that
maximizes the tracking performance of all vehicles.

A. Linear MPC Formulation

The tracking controller formulation is presented using the
reference trajectory pr(σ) associated to the p-th discrete
trajectory envelope (of the j-th vehicle). By using the differ-
ential flatness property of (1), we can obtain [6] associated
reference state and control trajectories qr(t), vr(t) that (by
construction) satisfy q̇r(t) = f(qr(t),vr(t)).

With the assumption that the vehicle starts “close” to the
reference trajectory, we linearize (1) along (qr(t),vr(t)),
and discretize using forward difference to obtain the follow-
ing discrete-time, time-varying linear dynamical system

∆qk+1 = Ak∆qk + Bk∆vk, k = 0, . . . , D − 1, (7)

where ∆qk = qk − qrk, ∆vk = vk − vrk and
1 0 − sin(θrk)vrk∆t 0

0 1 cos(θrk)vrk∆t 0

0 0 1
vrk∆t

l cos(φr
k)2

0 0 0 1


︸ ︷︷ ︸

Ak

,


cos(θrk)∆t 0

sin(θrk)∆t 0
∆t tan(φr

k)
l 0

0 ∆t

 ,
︸ ︷︷ ︸

Bk

with ∆t being the sampling time. At each sampling time we
solve the following quadratic program (QP)

minimize J =

D∑
k=1

∆qTkQk∆qk +

D−1∑
k=0

∆vTkRk∆vk (8)

subject to (7), with a given ∆q0

qk ∈ SIpk , vk−1 ∈ Vk−1, k = 1, . . . , D,

with decision variables4 the ∆qk’s and ∆vk’s. D is the
number of sampling times in the preview window, Qk and
Rk are assumed to be positive-definite matrices that penalize
state and control deviation. The Vk’s are assumed to be
compact sets that contain the origin in its interior and p is
given. Note that the sequence 〈SIk〉 can be used to define
regions for which the linear approximation is “good enough”.

The optimal trajectory envelope for vehicle j is defined as

p?(j) = arg min
p∈{1,...,P}

(
J?(j)p

)
,

where J?(j)p is the value of J at the solution (for vehicle j).
Overall, each vehicle is given P trajectory envelopes

within which to follow a reference trajectory. Each of these
trajectory envelopes leads to one QP, for which the solution
is found. We note again that vehicle j does not necessarily
execute p?(j), rather the solution of the pe-th QP is used
to provide control inputs for the vehicle (so as to ensure
that each vehicle acts consistently with respect to the other
vehicles). A measure of how well the vehicle would perform
on all trajectory envelopes is used to inform the centralized
trajectory envelope selector, whose task it is to choose which
of the P trajectory envelopes would best suit the vehicle
given its current state and the state of other vehicles.

VII. EVALUATION

We now present an experimental validation of our ap-
proach, focusing on the performance of trajectory scheduling
and on the use of discrete trajectory envelopes for control. All
test runs have been performed in simulation on an ordinary
laptop computer, and the same kinematic and geometric
models were employed for all vehicles, namely those of
a Linde H50D forklift (inset in Fig. 2). All experiments
employ minimum and maximum speeds (v, v) = (2, 10)m/s
to obtain the initial temporal envelopes T .

4For simplicity of notation we have assumed that the indexes (k) of
reference states qr and control inputs vr in a preview window always
start from 0. Hence, ∆q0 always denotes (an estimation of) the current
state (even though (7) is time varying).



The lattice-based path planner used to compute the initial
reference path for spatial envelope computation employs a
grid resolution of 0.2 meters, 16 angles for θ (equally spaced
in [−π, π]), and each vertex is connected to 15 others through
pre-calculated, kinematically feasible motion primitives.

A. Qualitative Evaluation

A single run in an industrial scenario was performed
to qualitatively assess the feasibility of the approach in a
realistic setting. For this purpose, we used a real map of
an underground mine (courtesy of Atlas-Copco Drilling Ma-
chines, see Fig. 2), where we deployed 7 identical vehicles
with pre-assigned start and destination poses.

Reference paths were generated using ARA∗ with a 5
second cut-off time. A total of 140 polyhedra were computed
for the 7 vehicles. The ScheduleTrajectories() al-
gorithm identified three groups of conflicting polyhedra
(shaded in Fig. 2). Ta, the solution of the scheduling CSP,
consisted of 13 temporal constraints.

Extracting a specific trajectory for execution other than
the ET trajectory took about 250 milliseconds (no further
conflicts were found). The total time required to generate 10
discrete trajectory envelopes was less than 40 seconds: less
than 5 seconds for the path planning, and 34 seconds for
scheduling and discrete trajectory envelope generation.

B. Quantitative Evaluation

To evaluate our approach in a more thorough and quanti-
tative way, we generated a benchmark set of 900 trajectory
scheduling problems. On an obstacle free map of width and
length of 50 meters, we pre-defined 80 poses, where the
(x, y) coordinates of each pose correspond to one of 10
points spatially distributed on a circle, 40 meters in diameter,
and where the orientation θ is one of 8 pre-determined
angles. Each pose could be chosen as initial or final pose for
a vehicle, with the only constraint that the (x, y) coordinates
of the two poses should be different.

The experimental evaluation was performed by defining
9 test sets, each corresponding to an increasing number of
vehicles concurrently deployed in the environment, from 2
to a maximum of 10. For each set, we performed 100 test
runs, as follows. In each run, we randomly chose initial and
final poses for the number of vehicles required, only avoiding
that two or more vehicles had the same starting or final (x, y)
positions. In order to make the problems difficult to solve for
the scheduler, we also added temporal constraints imposing
that the temporal distance between all initial polyhedra is
zero, thus forcing all vehicles to start moving at the same
time. This, combined with a non-zero minimum speed for
all vehicles, is what allows some benchmark problems to be
unsatisfiable (UNSAT).

Again focusing on trajectory scheduling efficiency, we
measured the time required by the scheduler to find a
conflict-free solution for each run, or to identify the problem
as unsolvable. The results are shown in Fig. 3 (the percentage
of satisfiable problems is shown on top of each set of
results.) As expected, scheduling time grows exponentially
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Fig. 3. Quantitative evaluation of the trajectory scheduler.

with the number of vehicles involved. This time does not
include discrete trajectory envelope generation (all conflicts
are found the first time scheduling occurs, see Section V).

Two features of these results are interesting. First, note that
problem difficulty in this benchmark is somewhat artificially
inflated as all vehicles are constrained to operate in an area
which is 40-meter diameter circle at roughly the same time.
Moreover, all vehicles are constrained to start moving at the
same time, as all starting polyhedra are constrained to occur
at the same time and a minimum velocity of zero is not
possible. Even under these rather unlikely circumstances,
the average resolution time remains under one second up
to problems in which we deployed 8 vehicles. Second,
the calculation of each set of discrete trajectory envelopes
never takes more than 50 milliseconds (the most challenging
problem of our benchmark contains 94 polyhedra).

Considering D = 30 sampling times in the preview
window, a condensed reformulation of QP (8) (i.e., with the
equality constraints in (7) eliminated) can typically be solved
in under 4 ms (plus 1 ms for condensing). Alternatively,
we can leverage the sparsity pattern of the QP’s original
formulation to obtain even better performance [29], [23].

VIII. CONCLUSIONS

In this paper we have presented a constraint-based ap-
proach to multiple vehicle coordination based on the notion
of least commitment: vehicle trajectories are progressively
refined by several constraint solvers to obtain multiple sets
of constraints on trajectories which guarantee conflict-free
execution. These sets of constraints, which we have called
trajectory envelopes, represent alternative execution patterns
for the vehicle controllers to track. All solvers perform
redundant computation: vehicle controllers evaluate alterna-
tive trajectory envelopes and inform a centralized trajectory
selector of their current tracking performance; scheduling
computes these alternative trajectory envelopes and informs
vehicles about which one should be adhered to for execution.

The primary advantage of this approach is that it allows
to take into account requirements at all levels of decision
making. This is essential in industrial applications, where
reference paths and temporal constraints on tasks may be
completely or partially specified (and modification of these



Fig. 2. A solution to a mission planning problem involving seven vehicles in an underground mine. Polyhedra involved in conflicts during
trajectory scheduling are shaded.

requirements is undesirable). We have shown through a brief
experimental evaluation that our approach scales well to
realistically sized and structured scenarios.

The approach described in this paper provides a means to
partially handle uncertainty in the position of vehicles within
given constraints on time and space. We do not handle other
types of uncertainty, such as perceptual uncertainty — this
will be one of the directions of future work.
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