
Active Execution Monitoring Using Planning and Semantic Knowledge

Abdelbaki Bouguerra and Lars Karlsson and Alessandro Saffiotti∗
Örebro University, SE-70182 Örebro Sweden

Email: {aba,lkn,asaffio}@aass.oru.se
Web: http://aass.oru.se

Abstract

To cope with the dynamics and uncertainty inherent in real
world environments, autonomous mobile robots need to per-
form execution monitoring for verifying that their plans are
executed as expected. Domain semantic knowledge has lately
been proposed as a source of information to derive and mon-
itor implicit expectations of executing actions. For instance,
when the robot moves into an office, it would expect to see
a desk and a chair. Such expectations are checked using the
immediately available perceptual information. We propose to
extend the semantic knowledge-based execution monitoring
to handle situations where some of the required information
is missing. To this end, we use AI sensor-based planning to
actively search for such information. We show how verify-
ing execution expectations can be formulated and solved as
a planning problem involving sensing actions. Our approach
is illustrated by showing test scenarios run in an indoor envi-
ronment using a mobile robot.

Introduction
Plan execution and monitoring by mobile robots is a com-
plex task as it involves dealing with uncertainty and unex-
pected situations. To deal with potential run-time contingen-
cies, the execution system employs monitoring procedures
to make sure the execution of the plan does not divert from
its intended course of action (Fikes, Hart, & Nilsson 1972),
(DeGiacomo, Reiter, & Soutchanski 1998).

Execution monitoring approaches have generally focused
on comparing the explicit effects of actions to what is really
produced by the execution of the action (Haigh & Veloso
1997), (Pettersson 2005). This supposedly means that the ef-
fects to monitor are directly observable. That is of course not
always realistic in a real world environment where check-
ing expectations is a complex process. Therefore, more ad-
vanced forms of reasoning involving semantic knowledge
were proposed to derive implicit expectations and monitor
them (Bouguerra, Karlsson, & Saffiotti 2007b). For exam-
ple, a mobile robot executing an action to enter an office
should expect to see properties typical for an office, i.e., at
least a desk, a chair, and possibly a PC. If the robot is en-
tering a kitchen instead, it should expect to see an oven, a
sink, etc. These implicit expectations are details that would
add complexity to the initial planning task, if the planner

∗This work has been supported by the Swedish KK foundation.

has to reason explicitly about them. That is why they are en-
coded outside the actions of the task planner. In (Bouguerra,
Karlsson, & Saffiotti 2007b) it is shown how the robot can
compare its implicit expectations to the objects (and prop-
erties of objects) it actually observes, and come to one of
three conclusions regarding the expectations: (1) they are
confirmed (2) they are violated (3) it cannot be determined
whether they hold or not, e.g., due to that only parts of the
location or objects under observation can be seen at the mo-
ment. That brings us to the problem we tackle in this paper,
i.e., expectations are not always immediately observable.

We extend the semantic knowledge-based execution mon-
itoring to handle the third case above. The key idea is to
model the problem of checking implicit expectations as a
planning task, where the initial state represents the miss-
ing information situation and the goal represents a situation
where that information is available. Therefore, the generated
plan includes movement and observation actions needed to
gather the required information. The implicit expectations
to check are related to the execution of an action that is it-
self part of a top-level plan, which may have been generated
by the same planner used for planning information gathering
(but with a different domain description). In this work, how-
ever, it is planning information gathering for the purpose of
monitoring that concerns us.

The reason why we opted for AI sensor-based planning
is the ability to handle complex situations involving miss-
ing information in an effective and automatic way. Also,
by combining semantic domain-knowledge and AI sensor-
based planning, the proposed approach achieves an inter-
leaving of planning and execution, which is a desired abil-
ity of autonomous robotic systems acting in uncertain envi-
ronments(Nourbakhsh & Genesereth 1996). In fact, at task
planning time, the task planner can reason on a more ab-
stract level (office, kitchen, etc.) and rely on the monitoring
process to check the details (desk, oven, etc.) at execution-
time. The latter, in turn, uses sensor based planning when it
is needed to do so.

In the next section we give an overview of the semantic
knowledge-based execution monitoring framework. Then,
we detail how checking expectations can be formulated as a
planning task. Before concluding, we describe test scenarios
run on a mobile robot.

3rd Workshop on Planning and Plan Execution for Real-World Systems ICAPS 2007

9



Semantic Knowledge-Based Monitoring
Semantic knowledge refers to knowledge about objects,
their classes and how they are related to each other (this
knowledge is sometimes called ”ontological” especially in
the context of web contents). In the following we give a
short overview of how such knowledge can be used in exe-
cution monitoring. For more information, the reader is re-
ferred to (Bouguerra, Karlsson, & Saffiotti 2007b).

The LOOM System
In this paper, we use LOOM (MacGregor 1999), a well
established knowledge representation and reasoning sys-
tem for representing and managing the semantic domain-
information. The choice of LOOM was motivated by the-
oretical and practical considerations: LOOM is a well sup-
ported open source project whose knowledge representation
and reasoning is based on description logics (DLs) (Baader
et al. 2003) which provide a good trade-off between repre-
sentation power and reasoning tractability. Another impor-
tant characteristic of DLs is their reasoning capabilities of
inferring implicit knowledge from the explicitly represented
knowledge.

LOOM provides a language to write definitions of con-
cepts and relations, and an assertion language to specify con-
straints on relations and concepts and to assert facts about
individual objects.

Semantic knowledge in LOOM is organized in knowledge
bases that contain definitions of concepts and relations be-
tween concepts. Concepts are used to specify the existence
of classes of objects such as “there is a class of rooms” or “a
bedroom is a room with at least one bed”:
(defconcept Room)

(defconcept Bedroom

:is (and Room (at-least 1 has-bed)

(at-most 1 has-sofa)))

The term has-bed in the second definition denotes a relation
between objects of class Bedroom and objects of class Bed1.
This relation is defined in LOOM as follows:
(defrelation has-bed

:domain Bedroom :range Bed)

When a relation R appears within a concept expression it is
called a role. A filler of a role R is an object (individual) that
corresponds to the second argument of R when considered as
a binary predicate

The atomic constructs (at-least 1 has-bed) and (at-most

1 has-sofa) above specify constraints over the number of
beds, respectively sofas, that can be in a bedroom. It is also
possible to specify constraints over the types of objects an
object can be in relation with. For instance, (some R C), re-
spectively (all R C), is used to specify that at least one filler,
respectively all fillers, of role R be of type C. The concept
construct (oneOf a1, a2, · · · , am) specifies a class of objects re-
stricted to be in the set {a1, a2, · · · , am}.

More complex concept expressions are constructed by
combining other concept names using a limited number of

1As notation, the first letter of concept names is capitalized,
while relation names start with uncapitalized letter.

connectives (and, or, not, implies). The semantics of con-
cept expressions are interpreted in terms of set theory opera-
tions or in terms of equivalent first-order logic formulas over
a non empty set of individuals.

Once the definitions are specified, specific individuals can
be asserted to exist in the real world.For example:
(tell (Bedroom r1)(has-bed r1 b1))

asserts that r1 is an instance of Bedroom and results in classi-
fying b1 as a bed (because the range of the relation has-bed

is of type Bed). The instance r1 is also classified (deduced)
automatically as an instance of the class Room.

Classification is performed based on the definitions of
concepts and relations to create a domain-specific taxon-
omy. The taxonomy is structured according to the su-
perclass/subclass relationships that exist between entities.
When new instances of objects are asserted (added to the
knowledge base), they are classified into that taxonomy.

Monitoring Framework
The monitoring process proposed in (Bouguerra, Karlsson,
& Saffiotti 2007b) uses semantic domain knowledge to de-
rive implicit expectations related to the successful execution
of a plan action.

Briefly, the monitoring process uses the action model
to determine the assertions to monitor, which are positive
effects involving objects that have some semantic proper-
ties. For instance the action (enter r1) has a positive effect
(robot-in = r1). If r1 is asserted in the semantic knowledge
base to be of type Bedroom, implicit expectations of being in
a bedroom are derived for monitoring. On the other hand
the action (pick-up c1) has positive effect (holding c1). If
c1 is asserted to be of type Cup, then the implicit expecta-
tions to derive are properties of a cup, as well as properties
specific to c1 such as color, when available. However, it is
not necessarily all implicit expectations that are of interest.
In particular, we are only interested in observable proper-
ties and relations. For instance, the shape of an object may
be observable, whereas what materials it is made of may be
more difficult to observe. Therefore, we need to classify
properties and relations into observable and non-observable.

The implicit expectations are then checked using the
available perceptual information. For instance, if the robot
has executed (enter r1), where r1 is asserted to be a bed-
room, the monitoring module checks whether at least one
bed has been perceived in the current room, to conclude that
the action has been executed successfully.

The process of checking the implicit expectations gives
rise to one of three outcomes:

1. All expectations hold. Therefore, success is returned to
reflect that the expectations are verified.

2. At least one expectation does not hold. Thus the monitor-
ing process returns failure. In this case, the robot might
have to re-estimate the current world state and then replan
from there to achieve the top-level task.

3. The truth values of some expectations are not known. This
happens when there is missing information, due to occlu-
sions for instance, needed to evaluate the expectations.

3rd Workshop on Planning and Plan Execution for Real-World Systems ICAPS 2007

10



The plan execution module proceeds to the execution of the
next action of its plan only when all the expectations (im-
plicit and explicit) are found to hold in the real world.

Planning for Execution Monitoring
In the third outcome above, the robot has two options. It
can either be credulous and consider the absence of counter-
evidence as sufficient grounds for assuming that the action
succeeded. Or, it can take a cautious approach and actively
try to find that missing information. Which approach to take
may depend on many different factors, such as the prior
probability of action failure. In the following, we assume
a cautious approach, where the robot has to look for infor-
mation required to evaluate expectations.

We propose an approach based on automatically analyz-
ing and encoding the situation as a planning problem whose
solution would involve generating an information gathering
plan. The successful execution of the information gathering
plan makes it possible to determine whether the expectations
hold or not.

The generation and execution of monitoring plans re-
quires information from different sources. First, we obvi-
ously need the semantic knowledge base in order to gener-
ate the implicit expectations. Second, a planning domain is
needed, specifying among other things observations actions
to test different properties. Other types of knowledge in-
clude spatial information such as topological maps and the
spatial relations between objects (Cambon, Gravot, & Alami
2004). In the following we focus on the planning domain.

Modeling The Planning Domain
A planning domain consists of the specification of world
states, the actions executable in each state, as well as the
observations to be made in each state when executing a spe-
cific action. We use a first order language to encode world
states and action templates.

Since the implicit expectations to evaluate are simply
atomic concept constructs, the planning domain contains an
observation action for each observable atomic concept con-
struct. Each action gathers information so that the related
concept construct can be evaluated. For instance:

• Action (eval-<A> ?x) collects information required to ver-
ify whether the individual bound to the variable ?x is
of type A. Thus, (eval-room r10) checks if the individ-
ual r10 is an instance of the atomic concept room, and
(eval-container c1) checks whether object c1 is of type
container. Note that there are as many action names as
atomic concepts.

• Action (eval-all R C ?x) keeps track of the perceived in-
dividuals related (through R) to ?x. It concludes that (all
R C) is verified only if those individuals are all of type C.

Here is a detailed description, in the first order lan-
guage of the PTLPLAN planner (Karlsson 2001), of the ac-
tion (eval-at-least ?n ?r ?x) associated with the at-least

atomic concept construct, i.e., (at-least n R) of an instance
i. The variables ?n, ?r, and ?x are to be bound respectively
to n, R, and the instance i.

action:(eval-at-least ?n ?r ?x )
prec: (and (not (known (at-least ?n ?r ?x)))

(robot-at = ?l)(part-of ?l = ?x)
(not (checked ?r ?l))(can-check ?r ?l))

res:(and (checked ?r ?l = t)
(cond ((at-least ?n ?r ?x)

(obs (at-least ?n ?r ?x = t)) )
((and (at-least ?n ?r ?x = f)

(forall(?l)(can-check ?r ?l)(checked ?r ?l)))
(obs (at-least ?n ?r ?x = f)))
(t (and (obs (at-least ?n ?r ?x = f))

(at-least ?n ?r ?x = t f))))

The intuition behind the action is that the robot can move
between different positions, and at each position it can ob-
serve a number of individuals related to ?x by ?r. While
doing that, it keeps track of the total number of observed
individuals and compares it to ?n.

The initially false predicate (checked ?r ?l) denotes
whether the robot tried to observe individuals, needed to
evaluate the relation ?r, from position ?l. The initial truth
value of the predicate (at-least ?n ?r ?x ) is unknown. The
action is intended to observe the truth value of this predicate,
to determine if the constraint (at-least n R) is true for the
individual bound to ?x. We use (known α) to denote that the
formula α is true in all the possible worlds of the belief state
where the action is applied.

In short, the precondition part specifies when the action
is applicable, i.e., the truth value of (at-least ?n ?r ?x) is
not known, and the robot is at a location where it is possi-
ble to observe individuals related to ?x by relation ?r. The
results part encodes the effects of the action. Besides as-
serting (checked ?r ?l = t), the action has also three condi-
tional outcomes specified with the cond form. Note that the
cond form works essentially like the Lisp cond, and the obs

form is used to encode run-time observations.

1. The first outcome is observing that the constraint is ver-
ified. This happens when the predicate (at-least ?n ?r

?x) is true, i.e., at execution time, at least ?n objects have
so far been observed to be related to ?x by ?r.

2. The second outcome is observing that the constraint is vi-
olated. This is the result when the robot has visited all
locations where it is possible to perceive objects that sat-
isfy ?r, yet their total number is still less than ?n.

3. Finally, if the total number of perceived objects is less
than ?n and there are locations where the robot may ob-
serve extra objects, Then the third outcome is observing
that (at-least ?n ?r ?x) is not verified and asserting its
truth value to be unknown.

Planning Process
Generating plans to collect information successfully, re-
quires that the planner takes into account the issue of partial
observability of the environment. To this end, belief states
are used to represent the agent’s incomplete and uncertain
knowledge about the world at some point in time, i.e., a be-
lief state represents a set of hypotheses about the actual state
of the world given past observations.

Initial Belief State Before calling the planner, the mon-
itoring process formulates an initial belief state contain-
ing hypotheses about the truth value of each expectation to

3rd Workshop on Planning and Plan Execution for Real-World Systems ICAPS 2007

11



check. This is done by asserting that the expectations can be
true or false.

Example 1 Suppose that the robot has executed the action
(enter r1), where r1 is an instance of Bedroom whose def-
inition is given above. In the case where r1 is known to
be a room and the robot has yet not seen any sofa nor any
bed inside r1 (i.e, the expectations (at-least 1 has-bed) and
(at-most 1 has-sofa) are not known to be true or false for
the individual instance r1), this situation is encoded as:

(and (room r1)(at-least 1 has-bed r1 = t f)

(at-most has-sofa 1 r1 = t f))

Where “= t f” means the truth value can be either t(rue)
or f(alse). This formula encodes a belief state with four
hypotheses (possible worlds).

The monitoring process adds to the initial belief state the
locations where it is likely to observe individual objects or
features that would bring more information about an un-
known concept construct. For instance, the robot can decide
that in order to look for beds, it needs to scan room r1 from
two locations r1-1 and r1-4. Therefore it adds (can-check

bed r1-1),(part-of r1-1 = r1),...etc to its belief state. In our
current implementation this information is part of the map.

Goal Specification The goal formula of the planning
problem is a modal knowledge formula containing a con-
junct of the predicates associated with the expectations
whose truth value are unknown. The predicates are assigned
the expected truth value of their corresponding expectations.
For the previous example, the goal formula is:

(known (and (at-least 1 has-bed r1 = t)

(at-most 1 has-sofa r1 = t)))

Plan Generation In practice, we use the progressive plan-
ner PTLPLAN (Karlsson 2001). PTLPLAN searches in a space
of belief states. Actions can both have causal effects that
change properties in the world, and observation effects that
reveal some of the hidden information about the exact state
of the world. Hence, observations split up a belief state into
several new and more informative belief states. The latter
leads to conditional branches in the plan. The planner starts
from the initial belief state and adds actions until a belief
state satisfying the goal is reached. When an action results
in several new belief states with different observations, the
planner inserts a conditional branching in the plan and con-
tinues planning for each branch separately.

To be able to resume the execution of the top-level plan,
information gathering plans are restricted to actions that do
not alter the top-level plan state in any relevant way. For
example, the information gathering plan to verify the expec-
tations of being in r1 is not allowed to include actions to
move outside r1. In the scenarios we consider here, which
only involve observation and movement actions and where
the top-level actions are to move to a certain room, such a
simple schema is sufficient. A more flexible approach is to
require that certain conditions hold at the end of the plan ex-
ecution, such as the robot being in the same room when the
generation of the monitoring plan was launched.

Example 2 The following plan is generated for checking
whether r1 is a bedroom, starting from the situation where
the truth values of the implicit expectations (at-least 1

has-bed r1) and (at-most 1 has-sofa r1) are unknown.

((eval-at-least 1 has-bed r1)
(cond ((at-least 1 has-bed r1 = f)

(move r1-2)(eval-at-most 1 has-sofa r1)
(cond ((at-most 1 has-sofa r1 = t)

(move r1-4)(eval-at-most 1 has-sofa r1)
(cond ((at-most 1 has-sofa r1 = t)

(eval-at-least 1 has-bed r1 )
(cond ((at-least 1 has-bed r1 = f)(fail))

((at-least 1 has-bed r1 = t)(success))))
((at-most 1 has-sofa r1 = f)(fail))))

((at-most 1 has-sofa r1 = f) (fail))))
((at-least 1 has-bed r1 = t)
(move r1-2)
(eval-at-most 1 has-sofa r1 )
(cond ((at-most 1 has-sofa r1 = t)

(move r1-4) (eval-at-most 1 has-sofa r1)
(cond ((at-most 1 has-sofa r1 = t) (success))

((at-most 1 has-sofa r1 = f) (fail))))
((at-most 1 has-sofa r1= f) (fail) )))))

The special action (fail) (resp. (success)) denotes failure
(resp. success) in satisfying the goal. Note that the plan de-
clares failure as soon as the observation (at-most 1 has-sofa

r1) evaluates to false, meaning that more than one sofa has
been seen in r1.

The generated plan includes movement and observation
actions. In fact that is specific to the navigation scenarios,
and not a restriction. In other scenarios, movement actions
might not be needed, but observation actions will always be
necessary, since the aim is to gather information. For exam-
ple, if the robot is executing the action (grab c21), where the
symbol c21 refers to a cup that contains coffee, the observa-
tion plan would include actions to check the content of the
cup but no robot movement actions.

Plan Execution
The execution of the information gathering plan is carried
out by executing each action separately. Non observation ac-
tions are translated into low-level sensorimotoric processes
that control the motion of the robot. Observation actions
are translated into processes that use the newly available
perceptual information to assert facts needed to evaluate
the truth value of the predicate corresponding to the con-
cept construct. For instance executing action (eval-at-most

1 has-sofa r1) results in adding information needed to eval-
uate the truth value of (at-most 1 has-sofa r1). In this case,
all newly perceived sofas, are added to the execution-time
belief state. In other words the assertion (and (sofa sf)

(sofa r1 sf)) is executed for all newly perceived sofas sf.
The execution of the actions of the information gathering

plan are also monitored by the same framework. This means
that a new plan might be needed to check the execution of an
observation action, resulting in recursive active monitoring
(see test scenarios section). Note that there is no risk for
infinite recursive information-gathering, as LOOM does not
allow cyclic taxonomies.

The monitoring module concludes that the implicit expec-
tations are verified, when the last executed action is success.
Reaching the fail action implies that there was at least one
violated expectation.

3rd Workshop on Planning and Plan Execution for Real-World Systems ICAPS 2007

12



Test Scenarios
In order to test our approach, we implemented the moni-
toring framework on a Magellan Pro mobile robot (figure
2) running a fuzzy behavior control architecture, and us-
ing LOOM for knowledge representation and reasoning, and
PTLPLAN to generate both task plans and information gath-
ering plans (in all the test scenarios we ran, the planning
time was less than one second.)

Figure 1 shows the main components of the architecture
implemented on our mobile robot. Briefly, these compo-
nents are:
• The planning component includes the planning engines

and the different planning domain definitions. It responds
to planning requests sent by the executor. It also com-
municates the model of the action under execution to the
monitor component.

• The executor component keeps track of the current plan
in execution and carries out the process of translating
the high-level symbolic plan actions into executable pro-
cesses. It also responds to user’s requests, e.g., to achieve
a new task, or to interrupt the execution of the current plan
under execution.

• The monitor component performs monitoring at the dif-
ferent levels of execution. This includes the high-level
semantic knowledge-based monitoring. The monitor pro-
cess receives the action to monitor from the executor and
reports back the status of the action execution. In case
the monitoring process needs some information to be col-
lected, the planning component is requested to generate a
plan to achieve the task of information gathering.

• The perception component establishes and maintains the
correspondence between the percepts produced by the
onboard sensing modalities (mainly vision and olfac-
tion) and the symbols used by the planning and semantic
knowledge systems.

• The state component keeps track of the execution con-
text of plans as well as maintains the expected state of
the world and the robot (self-localization). It is updated
by the executor and the perception components to reflect
action explicit effects and what the robot is observing.

• The semantic knowledge base component (SKB) consists
of the knowledge representation and management system
LOOM. Its role is storing conceptual and assertional do-
main knowledge. It also processes and answers queries,
e.g., coming from the monitoring module.
As our robot cannot perform manipulation tasks, our test

scenarios consisted in performing mostly navigation tasks.
Since our main objective is to show the capacity of monitor-
ing using semantic knowledge and not object recognition,
we let simple shapes like balls and boxes stand in for beds,
sofas, etc. The experiments have been performed in a lab
imitated-house, placing the simple objects to simulate pieces
of furniture in the different rooms (see figure 2).

The semantic knowledge base contains among other
things the following concept definitions:

(defconcept Room)(defconcept Bed)(defconcept Oven)

(defconcept Sink)(defconcept Sofa)(defconcept TV)

(defconcept Bedroom :is

(:and Room (at-least 1 has-bed)

(at-most 1 has-sofa)))

(defconcept Kitchen :is

(:and Room (exactly 1 has-sink)

(at-least 1 has-oven)

(exactly 0 has-bed)(exactly 0 has-sofa)))

(defconcept Living-room :is

(:and Room (at-least 1 has-sofa)

(exactly 1 has-tv)(exactly 0 has-sink)))

(tell (Bedroom r1)(Bedroom r2)(Living-room r3)(Kitchen r4))

Passive Monitoring. In this test scenario, the robot moved
into room r4 asserted to be the kitchen. In order to verify that
the robot was in the correct room (not dislocated), the moni-
toring module derived expectations of being in a kitchen. As
r4 is a small room, this could be determined without any fur-
ther movement, i.e., without calling the planner. The mon-
itoring module was able to immediately establish the truth
value (true or false) of the implicit expectations.

Active Monitoring. The aim of this test scenario was to
show how planning could be used to collect information
to infer the truth value of implicit expectations. The as-
signed top-level task was to clean the living-room (r3 in
figure 2), starting from the kitchen r4. The top-level task
plan (enter r3);(clean r3) was produced by the task plan-
ner to accomplish the assigned task. Upon finishing the exe-
cution of the first action, i.e., after having moved to destina-
tion r3, the monitoring process was triggered to check both
the explicit and implicit expectations. The implicit expec-
tations were derived from the DL definition of the concept
living-room, i.e., (and room (at-least 1 has-sofa )(exactly

1 has-tv)(exactly 0 has-sink)). Evaluation of these im-
plicit expectations using the immediately available percep-
tion information revealed that only the expectation (room r3)

was verified. The truth value of the other three expectations
was not known. Consequently, the monitoring process cre-
ated a belief state reflecting the situation and called the plan-
ner to find a plan to check whether r3 has at least one sofa, at
least one TV set, and no sink. The generated plan included
actions to move and scan the room from four predetermined
locations looking for sofas, TV-sets, and sinks. The plan-
ning problem was solved in less than 1 second. We had two
runs of this experiment. In the first run, the room was cor-

Monitor Perception

Executor

StateSKB
(Loom)

Planning

user

requests

Figure 1: Architecture components

3rd Workshop on Planning and Plan Execution for Real-World Systems ICAPS 2007

13



r3

r1 r2

r4

living-room

bedroom bedroom

kitchen

Figure 2: Experimental setup. (Left) Our robot with simple
objects used to represent furniture items. (Right) map of the
environment used in our experiments.

rectly found to be a living-room, thus the action (enter r3)

was concluded to have been executed successfully and the
execution of the top-level task plan was resumed with the
next action, i.e., (clean r3). In the second run, we modified
the room by adding an object of type sink and removing the
objects representing the sofa and the TV-set. As a result, the
execution of the information gathering plan failed to find ev-
idence that the room was a living-room. Consequently, the
monitoring process concluded that the action had failed to
execute successfully.

Recursive Monitoring. In this test scenario, we show how
the framework applies recursively to monitor the execution
of an information gathering plan (itself generated to moni-
tor expectations of a top-level plan). We also show how our
approach applies to actions other than navigation. We modi-
fied the semantic knowledge base by redefining the range of
sofa relation to be the two-seat-sofa concept given as:
(defconcept Two-Seat-Sofa :is

(and Sofa (= number-of-seats 2)))

The robot executed a task plan that included an action to
enter the bedroom (enter r1) which resulted in the gen-
eration and execution of the information gathering plan
above. Using semantic knowledge to monitor the execu-
tion of (eval-at-most 1 has-sofa r1) action involved deriv-
ing the implicit expectation that any perceived sofa inside
r1 had to verify the constraint (= number-of-seats 2). Con-
sequently, a new information gathering plan was generated,
every time a new sofa was perceived, to check whether it had
a number of seats equal to 2. Each plan consisted of moving
in front of the sofa and observing the number of its seats.

This test scenario shows that our approach leads to a form
of interleaving of planning and execution. In fact, in the first
plan above, the planner did not include any actions to check
the number of seats of a sofa. This was handled at run-time
by the monitoring process once a sofa was perceived, i.e.,
by generating an information gathering plan to check that
the sofa is a two-seater

Simulated Information Gathering: In this test scenario,
we show that planning for monitoring can be used to check
the expectations of actions that do not involve robot loca-
tion. The top-level task plan included the action (pick-up

c1) to pick-up cup c1, where a cup is defined in the semantic

knowledge base as:

(defconcept Cup :is

(and Container (exactly 1 has-handle)))

Once the robot had finished the execution of the action, the
monitoring process was called to check that it was executed
successfully. This meant that the robot should be holding
an object (explicit effect) and that the held object should be
a container with one handle (implicit expectations). Check-
ing the explicit expectations gave a positive answer. How-
ever using the available perceptual information about the ob-
ject the robot was holding, it was not possible to establish
whether that object was a cup. This triggered information
gathering planning to find out whether the held object was
a container that had exactly one handle. The generated plan
was as follows(due to practical reasons, we only simulated
the execution of the resulting plan):
((move-gripper p1)(eval-container c1)
(cond ((container c1 = t)(eval-at-most 1 has-handle c1)

(cond ((at-most 1 has-handle c1 = t) (success))
((at-most 1 has-handle c1 = f) (fail))))

((container c1 = f) (fail))))

The intended effect of (move-gripper p1) was moving the
robot’s gripper to a position p1 in front of the camera, so the
observation actions (eval-container c1) and (eval-at-most

1 has-handle c1) could be executed (the observation actions
templates were different from those involving robot move-
ment).

Related Work
Although there is a considerable amount of work related
to plan execution monitoring in mobile robotics (Pettersson
2005), to the best of our knowledge, no research work has
used semantic knowledge and active information gathering
to monitor plan execution.

Reactive planning architectures, such as PRS (Ingrand,
Georgeff, & Rao 1992) use hand-coded procedures for mon-
itoring the events that might affect the execution of their plan
actions. Consequently, expectations are explicitly coded in
the monitoring procedure, which makes monitoring not flex-
ible. In plan-based mobile-robotic architectures, such as
Shakey (Fikes, Hart, & Nilsson 1972) and the LAAS archi-
tecture (Alami et al. 1998), monitoring amounts to looking
for discrepancies between the predicted state based on the
explicit effects of actions, and the real world state as com-
puted by the on-board sensing modalities.

There are several works that address information gather-
ing using planning. In mobile robotics, sensor-based plan-
ning was used to collect information to recover from percep-
tual failures (Bouguerra, Karlsson, & Saffiotti 2006). Infor-
mation collecting actions are also part of sub-symbolic poli-
cies for robot navigation (Simmons & Koenig 1995), and
localization (López et al. 2005).

It is worth emphasizing, that we are not using descrip-
tion logics to model planning domains and problems as in
(DeGiacomo et al. 1997) and (Badea 1998). Instead, we are
using planning to collect information to monitor information
derived from semantic knowledge.

3rd Workshop on Planning and Plan Execution for Real-World Systems ICAPS 2007

14



Conclusions
We have presented an intelligent plan execution monitor-
ing approach combining semantic domain knowledge and
sensor-based planning. We believe that execution monitor-
ing is a complex task, and therefore it needs to be addressed
with powerful reasoning tools. Semantic knowledge was
shown to be useful for deriving implicit expectations of ac-
tion execution. On the other hand, sensor-based planning
was employed to actively collect information required to de-
termine the truth value of such expectations. As a result,
the proposed monitoring process is flexible and effective,
since unpredictable and complex situations are handled dur-
ing run-time. We also argue that the proposed approach is
adequate for environments where lack of information is an
inherent feature, since at planning time only abstract repre-
sentation of the planning domain can be used. More details
are handled at run-time by the monitoring process.

We would like to emphasize that what is presented here is
a first version of active semantic execution monitoring and
there is potential to develop the method further, e.g., by us-
ing other knowledge representation formalisms (including
probabilistic ones).

Finally, there are open issues that we plan to address in
our future work. First, a deeper experimental validation that
addresses scalability and richer domains is among our objec-
tives. Second, the issue of when to engage in active informa-
tion gathering needs to be investigated carefully, since there
might be situations where information gathering is expen-
sive. We also regard the issue of which expectations should
be selected for checking as an important one, as the num-
ber of expectations might be very big. In a related work
(Bouguerra, Karlsson, & Saffiotti 2007a), we have consid-
ered a probabilistic approach to semantic knowledge-based
execution monitoring, which computes probabilities for dif-
ferent action outcomes, e.g., different locations of the robot.
It is based on both the a priori probability of each outcome
(e.g., the probability of navigating successfully to the de-
sired room), and the probability that the current place or ob-
ject is actually consistent with the semantic knowledge given
what is observed. This approach can support a more in-
formed decision about whether more information is needed
or not and what observable properties of objects are more
important to check than others. In addition, it would per-
mit us to take advantage of the ability of PTLPLAN to deal
with probabilities, and to compute an expected cost of the
monitoring plan.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and In-
grand, F. 1998. An architecture for autonomy. Int. Journal
of Robotics Research 17(4):315–337.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook. Cambridge University Press.
Badea, L. 1998. Planning in description logics: Deduction
versus satisfiability testing. In Proc. of the 13th European
Conf. on AI, 479–483.

Bouguerra, A.; Karlsson, L.; and Saffiotti, A. 2006. Sit-
uation assessment for sensor-based recovery planning. In
Proc. of the 17th European Conf. on AI, 673–677.
Bouguerra, A.; Karlsson, L.; and Saffiotti, A. 2007a. Han-
dling uncertainty in semantic-knowledge based execution
monitoring. In In Proc. of 2007 IEEE Int. Conf. on Intelli-
gent Robots and Systems.
Bouguerra, A.; Karlsson, L.; and Saffiotti, A. 2007b. Se-
mantic knowledge-based execution monitoring for mobile
robots. In In Proc. of 2007 IEEE Int. Conf. on Robotics and
Automation, 3693–3698.
Cambon, S.; Gravot, F.; and Alami, R. 2004. A robot task
planner that merges symbolic and geometric reasoning. In
Proc. of the 16th Eureopean Conference on Artificial Intel-
ligence, 895–899.
DeGiacomo, G.; Iocchi, L.; Nardi, D.; and Rosati, R. 1997.
Planning with sensing for a mobile robot. In Proc. of 4th
European Conf. on Planning, 156–168.
DeGiacomo, G.; Reiter, R.; and Soutchanski, M. 1998. Ex-
ecution monitoring of high-level robot programs. In Proc.
of the 6th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning, 453–465.
Fikes, R. E.; Hart, P.; and Nilsson, N. J. 1972. Learning and
executing generalized robot plans. Artificial Intelligence
3(4):251–288.
Haigh, K. Z., and Veloso, M. M. 1997. High-level plan-
ning and low-level execution: Towards a complete robotic
agent. In Proc. of the 1st Int. Conf. on Autonomous Agents,
363–370.
Ingrand, F. F.; Georgeff, M. P.; and Rao, A. S. 1992.
An architecture for real-time reasoning and system control.
IEEE Expert 7(6):34–44.
Karlsson, L. 2001. Conditional progressive planning under
uncertainty. In Proc. of the 17th Int. Joint Conf. on AI, 431–
438.
López, M. E.; Bergasa, L. M.; Barea, R.; and Escudero,
M. S. 2005. A navigation system for assistant robots
using visually augmented pomdps. Autonomous Robots
19(1):67–87.
MacGregor, R. 1999. Retrospective on loom. Technical
report, Information Sciences Institute, University of South-
ern California.
Nourbakhsh, I., and Genesereth, M. 1996. Assumptive
planning and execution: a simple, working robot architec-
ture. Autonomous Robots Journal 3(1):49–67.
Pettersson, O. 2005. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems 53(2):73–88.
Simmons, R., and Koenig, S. 1995. Probabilistic robot
navigation in partially observable environments. In Proc.
of the Int. Joint Conf. on AI, 1080–1087.

3rd Workshop on Planning and Plan Execution for Real-World Systems ICAPS 2007

15


