
Can Emil Help Pippi?

Robert Lundh, Lars Karlsson, and Alessandro Saffiotti
Center for Applied Autonomous Sensor Systems
Örebro University, SE-70182̈Orebro, Sweden

{robert.lundh, lars.karlsson, alessandro.saffiotti}@aass.oru.se

Abstract— This work is about the use of artificial intelligence
(AI) planning techniques to automatically configure a group
of cooperating robots. In particular, we study societies of
autonomous robotic systems in which robots can help each other
by offering information-producing resources and functionalities.
A configuration in our societies is a way to allocate and connect
functionalities among robots. In general, different configurations
can be used to solve the same task, depending on the current
situation. In this paper, we show a general approach to define,
generate, and execute configurations. We use knowledge-based
planning to automatically generate a configuration for a given
task, environment, and set of resources. We describe an experi-
mental system where these ideas are implemented, and show an
example of it in which two robots mutually help each other to
cross a door.

Index Terms— Multi-Robot Systems, Cooperating Systems,
Planning, Automatic Configuration

I. I NTRODUCTION

Consider the situation shown in Figure 1, in which a mobile
robot, named Pippi, has the task to push a box across a door.
In order to perform this task, Pippi needs to know the position
and orientation of the door relative to itself at every time
during execution. It can do so by using its sensors, e.g., a
camera, to detect the edges of the door and measure their
distance and bearing. While pushing the box, however, the
camera may be covered by the box. Pippi can still rely on the
previously observed position, and update this position using
odometry while it moves. Unfortunately, odometry will be
especially unreliable during the push operation due to slippage
of the wheels. There is, however, another solution: a second
robot, called Emil, could observe the scene from an external
point of view in order to compute the position of the door
relative to Pippi, and communicate this information to Pippi.

The above scenario illustrates a simple instance of the
general approach that we suggest in this paper: to let robots

Fig. 1. Can Emil help Pippi to push the box through the door?

help each other by borrowing functionalities one another. In
the above example, Pippi needs a functionality to measure
the relative position and orientation of the door in order
to perform its task: it has the options to either compute
this information using its own sensors, or to borrow this
functionality from Emil. On first sight this type of cooperation
may look like a task allocation problem, however, as we shall
explain in the next section, it is a different type of problem.

More generally, we consider a society of autonomous
robotic systems embedded in a common environment. Each
robot in the society includes a number offunctionalitiesorga-
nized in some way, for instance, in a generic two-layer hybrid
architecture as shown in Figure 2. In these architectures, the
top layer implements higher cognitive processes for world
modeling (M) and for planning and deliberation (D). The
bottom layer implements sensori-motor processes for sensing
and perception (P) and for motion control (C), which are
connected to a set of sensors (S) and actuators (A).

We do not assume that the robots are homogeneous: they
may have different sensing, acting, and reasoning capacities,
and some of them may be as simple as a fixed camera
monitoring the environment. Thus, each robot may include
several, or none, functionalities in each one of the{P, M,
D, C, S, A} classes, which it can use to perform the tasks
assigned to it. The key point here is that each robot may also
use functionalities from other robots in order to compensate
for the ones that it is lacking, or to improve its own. In the
situation shown in Figure 2, Pippi borrows from Emil a P
functionality for measuring the relative position betweenthe

��
��
��

��
��
��

���
�
�
�

S

P

A

C

M D

Emil

S A

D

C

M

P

Pippi

Environment

Fig. 2. A simple configuration consisting of two-robots: Emil is providing
a missing perceptual functionality to Pippi.

door and itself.
We informally call configurationany way to allocate and

connect the functionalities of a distributed multi-robot system.
Note that we are interested in functional software configu-
rations, as opposed to the hardware configurations usually
considered in the field of reconfigurable robotics (e.g., [7],
[13]).

Often, the same task can be performed by using differ-
ent configurations. For example, in our scenario, Pippi can
perform its door-crossing task by connecting its own door-
crossing functionality to either (1) its own perception func-
tionality, (2) a perception functionality borrowed from Emil,
or (3) a perception functionality borrowed from a camera
placed over the door. Having the possibility to use different
configurations to perform the same task opens the way to
improve the flexibility, reliability, and adaptivity of a society
of robotic agents. Ideally, we would like to automatically
select, at any given moment, the best available configuration,
and to change it when the situation has changed.

Our overall research objective is threefold:
1) To formally define the concept of functionalconfigura-

tion of a robot society.
2) To study how toautomatically generatea configuration

of a robot society for a given task, environment, and
set of resources.

3) To study when and how tochangethis configuration in
response to changes in the environment, in the tasks, or
in the available resources.

In this paper, we focus on the first two objectives above:
the third objective will be the subject of future work. More
specifically, we define a concept of configuration which is
adequate from the purpose of automatically reasoning about
configurations, and show how to use AI planning techniques
to generate a configuration that solves a given task. We
also describe an experimental system where these ideas are
implemented, and show an example of it in which two iRobot
Magellan Pro robots mutually help each other to cross a door.

II. RELATED FIELDS

Although the field of cooperative robotics has received
much attention recently, only few works focus on problems
which are similar to the one addressed here.

Parkeret al [16] presents an application for a team of het-
erogeneous robots that help each other by sharing capabilities.
The application involves many different tasks, among which
the task of having sensor-rich leader robots guiding simple
robots is particularly interesting.

Simmonset al [22] consider a task involving a heteroge-
neous team of robots — a crane, a robot with a manipulator,
and a robot with stereo cameras — solving a construction
task where a beam is placed on top of a stanchion. This task
requires tight cooperation between the robots involved. For
specifying tasks, they use TDL (task description language)
[21], an imperative language which is a superset of C++.

Our work and the works by Parkeret al and by Simmons
et al share similar objectives, that is, to solve tightly-coupled

tasks with a team of heterogeneous robots. They both intend
to develop general techniques for such applications, but until
now it appears that they use configure their teams manually.
In contrast to these works, this paper presents a general wayto
automatically generate configurations of heterogeneous robots
for tightly-coupled tasks involving sharing of capabilities.

Benoit et al [1] presents a supervision system for a single
robot that is able to learn how to perform high level tasks.
The system generates modalities, using a hierarchical planner,
that consists of a combination of sensory-motor functions.
By combining these in to modalities, the robustness of the
system improves. An MDP is used to know which modality is
appropriate for a particular situation. This approach is similar
to the approach presented here in many aspects. The main
differences are due to the fact that they consider a single
robot, as opposed to our multi-robot system.

In addition to the above works, there are a few related
areas from which one might take inspiration to address the
objectives of our work.

In the area of multi-robot systems, much work has been
done on the problem of multi-robot task allocation, that is,
how to allocate a number of tasks to a number of robots
taking into account that different robots may be differently
adequate for different tasks (see, e.g., [9] for an overviewand
analysis). Some examples are the ALLIANCE architecture
[15] and Local Eligibility approach [26] based on local utility
estimates, and the M+ [3] and MURDOCH [8] approaches.
Closely related to task allocation are the issues of robotic
team configuration and of dynamic role assignment [25],
[23], [11]. Chaimowiczet al [4] consider roles as the part
of an individual agent in a cooperative task. They define a
role as a control mode in a hybrid automaton, and a role
assignment is a transition in that automaton. The common
aspect of all these multi-robot tasks is that the members of the
team needs to decide which robot should perform which task.
If the team consist of homogeneous members the decision
is based upon robot location, work load, among others. If
the team is heterogeneous the decision is also based upon
the capabilities of the individual team members. However,
even when considering teams of heterogeneous robots these
approaches do not typically address help in terms of helping
each other to achieve individual goals.

The problem of distributing the performance of a task
across a number of agents according to their respective
capabilities has been widely addressed in the Distributed AI
(DAI) and in the Multi-Agent Systems (MAS) communities.
Early work in DAI considered distributed problem solving
settings with a precedence order among sub-tasks [6]. Later
work has included the notion of coalitions between sub-
groups of more closely interacting agents [19]. The notions
of team-work [17], capability management [24] and norms
[2] have also been used in the MAS community to account
for the different forms of interactions between the sub-tasks
performed by the agents in a team. These works, however,
typically assume software agents, and are not concerned with
issues of physical action, mobility, and perception, whichplay

a central role in our work.
Another area of interest is program supervision, where pro-

gram modules are combined, tuned and evaluated in order to
solve specific computational tasks such as image processing,
often using planning techniques [10], [5], [20]. Our work
adds several dimensions to program supervision since we deal
with multiple physical agents with both sensing and acting
capabilities.

III. F UNCTIONAL CONFIGURATIONS

The first goal in our research program is to develop a defin-
ition of configuration that is adequate for the three objectives
presented in the introduction. In general, a configuration of
a team of robots may include interconnected functionalities
of two types: functionalities that change the internal state by
providing or processing information, and functionalitiesthat
change the state of the environment. (Some functionalitiescan
have both aspects.) In the work presented here we focus on
the former functionalities.

To define our notion of configurations, a clarification of
the three concepts of functionality, resource and channel is in
order.

A. Functionality

A functionality is an operator that uses information pro-
vided by other functionalities to produce additional informa-
tion. Each instance of a functionality is located in a specific
robot (or other agent). The functionality consists of:

• a specification of inputs, to be provided by other func-
tionalities. For each input, it contains information about
domain (e.g. video images) as well as timing information
(e.g. every 100 ms).

• a specification of outputs, to be provided for other
functionalities. They also contain domain and timing
information.

• a specification of relations between inputs to outputs.
• a set of causal preconditions, that is conditions in the en-

vironment that have to hold in order for the functionality
to be operational.

• a set of causal postconditions, that is conditions in
the environment which the functionality is expected to
achieve.

• possibly also a specification of costs in terms of e.g.
computation and energy.

A typical functionality could be the measure door operation
mentioned in the introductory example. This functionality
takes an image from a camera as an input and measures the
position and orientation of a door in the image. To produce
the output, the position and the orientation of the door, this
functionality has a precondition that needs to be satisfied.
The precondition is that the door must be fully visible in the
(input) image.

B. Resource

A resourceis a special case of a functionality. There are
two different types of resources: sensing resources and action

resources. Only sensing resources will be considered in this
paper. Asensing resourcehas no input from other function-
alities, and is typically a sensor that gives information about
the current state of the surrounding environment or perhaps
information about the internal state of the robot. An example
of a resources could be a camera. This sensing resource
produces images as output as long as the preconditions (e.g.
camera is on) are fulfilled.

C. Channel

A channeltransfers data from one functionality to another.
A channel can be in terms of either inter-robot or intra-robot
communication, and be on different mediums (radio, network,
internal connections). A channel may have requirements of
band width, speed and reliability.

D. Configuration

A configuration is the set of functionalities and the set
of channels that connects functionalities to each other. Each
channels connects the output of one functionality to the input
of another functionality.

In the context of a specific world state, a configuration is
admissibleif the following conditions are satisfied:

• each input of each functionality is connected via an ade-
quate channel to an output of another functionality with
a compatible specification (information admissibility).

• all preconditions of all functionalities hold in the current
world state (causal admissibility).

• the combined requirements of the channels can be satis-
fied (communication admissibility).

E. Examples

In order to illustrate the above concepts, we consider a
concrete example inspired by the scenario described in the
introduction. A robot is assigned the task of pushing a box
from one room to another one by crossing a door between
the two rooms. The “cross-door” action requires information
about position and orientation of the door with respect to the
robot performing the action. The resources available are two
indoor robots (including the one crossing the door) each one
equipped with a camera and a compass. The door to cross is
equipped with a wide-angle camera.

Figure 3 illustrates four different (admissible) configura-
tions that provide the information required by the action
“cross-door”, which include the functionalities above.

The first configuration involves only the robot performing
the action. The robot is equipped with a panoramic camera
sitting on a post that makes it possible to view the door even
when pushing the box. The camera produces information to
a functionality that measures the position and orientationof
the door relative to the robot.

The second configuration in Figure 3 shows the other
extreme, when all information is provided by the door that
the robot is crossing and the robot is not contributing with
any information. The door is equipped with a camera and
functionalities that can measure the position and orientation of

Fig. 3. Four different configurations that provide the position and orientation
of a given door with respect to robotA. See explanation in the text.

the robot relative to the door. This information is transformed
into position and orientation of door with respect to the robot
before it is delivered to robotA.

The third and fourth configurations in Figure 3 consist of
two robots (A andB), each with its own set of resources and
functionalities.

In the third configuration, robotA (the robot performing
the “cross-door” action) only contributes with one resource,
a compass. RobotB’s resources are a compass and a camera.
The camera provides information to two functionalities: one
that measures the distance and orientation to the door, and
another one that measures the distance to robotA. All these
measurements are computed relative to robotB. In order
to compute the position and orientation of the door relative
to robot A, we need to use a coordinate transformation.
This in turn requires that we know the relative position and
orientation of robotA relative toB. The relative position is
obtained from the camera information. The relative orientation
can be obtained by comparing the absolute orientations of the
two robots, measured by their two on-board compasses.

The fourth configuration in Figure 3 is similar to the third
one, except that the orientation of robotA relative toB is
obtained in another way, i.e., no compasses are used. Both
robots are equipped with cameras and have a functionality
that can measure the bearing to an object. When the robots
are looking to each other, each robot can measure the bearing
to the other one. By comparing these two measurements, we
obtain the orientation of robotA relative to robotB.

IV. CONFIGURATION GENERATION

Our second objective is to generate configurations automat-
ically. This process requires a declarative description of:

• the configuration domain,
• the state in which the configuration should be applicable,

and
• the goal for what the configuration should produce.

The domain of our configuration gives a specification of
the available functionalities and their properties. The state
declares the available robots and their capabilities, as well
as the state of the surrounding environment. The goal for
the configuration generation process is to produce a desired
information input. For example, in the cross-door example,
information goal is the position and orientation of the door
that is required as input by the cross-door behavior.

The description of available functionalities is realized using
operators similar to those of AI action planners. Two func-
tionality operators from the scenario in the previous section,
respectively calledmeasure-door andcamera, are shown
in Figure 4.

The input and output of a functionality represent
the data flow associated with the functionality. In the
measure-door example we have an image taken by camera
r as input and from that we are able to compute the position
and orientation of the doord relative to r as output. The
second example is an operator for a camera. Output from
camera is an image taken by camera located on robotr.

(functionality
name: measure-door(r, d)
input: image(r, d)
output: position(r, d),

orientation(r, d)
precond: visible(r, d)
postcond:
)

(functionality
name: camera(r, o)
input:
output: image(r, o)
precond: camera-on
postcond:
)

Fig. 4. Two functionality operators.

Sincecamera is a sensing resource no input is specified.
There are also certain conditions that need to be satisfied
in order for the functionality to operate, and conditions that
will be satisfied if the functionality is executed. This causal
flow is represented as preconditions and post-conditions inthe
operator. For instance the precondition formeasure-door
is that the doord is fully visible in the input image and
the precondition forcamera is that the camera is switched
on. Notice that the output ofcamera matches the input
of measure-door. Intuitively, this means that a channel
between these two functionalities can legally be created.

In order to combine functionalities to form admissible
configurations that solve specific tasks, we have chosen to
use techniques inspired by hierarchical planning, in particular
the SHOP planner [14]. Configuration planning differs from
action planning in that the functionalities, unlike the actions in
a plan, are not temporally and causally related to each other,
but related by the information flow as defined by the channels.
Functionalities are executed in parallel, and a functionality
becomes active when the input data is present. In order to
achieve the data flow between functionalities, a mechanism
that creates channels between functionalities is required.
Such connections are not required for action planning, and
obviously, no existing planning technique facilitate sucha
mechanism. Therefore we outline how the planner works.

Our configuration planner allows us to define methods that
describe alternative ways to combine functionalities (or other
methods) for specific purposes, e.g. combining the camera
functionality and the measure-door functionality above with
a channel on the same robot in order to obtain door measure-
ments of a specific door.

Figure 5 shows an example of a method that does exactly
that. There is a local channel inside the method connecting
the two functionalities (labeledf1 and f2). In addition,
the position and orientation output off2 is declared in the
out field to be the output of the entire method. Thereby,
any channel that in a method higher up in the hierarchy is
connected toget-door-info will effectively be connected
to measure-door.

(config-method
name: get-door-info(r, d)
precond: (camera(r), in(r, room),

in(d, room), robot(r), door(d))
in: -
out: f2: pos(r, d)

f2: orient(r, d)
channels: (local(r), f1, f2, image(r, d))
body:

f1: camera(r, d))
f2: measure-door(r, d)

)

Fig. 5. A method used by our planner.

The configuration planner takes as input a current causal
state s, a method ”stack” with initially one unexpanded
method instancel : m(c1, c2, ...) representing the goal of
the robot (l is a label), and a set of methodsM and a set
of functionality operatorsO. It also maintains an initially
empty configurationC and an initially empty sets of causal
postconditionsP . It works as follows:

1) Take the method instancel : m(c1, c2, ...) at the top of
the stack.

2) For this method instance:

a) If the method instance is a functionality, check if
it already exist in the current configurationC. If
it does not, add it to the current configurationC.
Go back to 1.

b) If it is a method, select an instantiated version of
the method schemam from M with preconditions
which are applicable ins (this is a backtrack
point). If there is none, report failure and back-
track.

3) Expand the method as follows:

a) Instantiate the remaining fields of the selected
method, and generate new unique labels instead
of the general labelsf1, f2 etc.

b) Add the channels of the method body (with new
labels) to the current configurationC.

c) Add the method instances (with new labels) of the
method body to the top of the stack.

d) Use the in and out fields of the method to recon-
nect any channels inC from the method instance
being expanded (i.e. with labell) to the new
method instances as labeled in the method body.

4) If the stack is empty, returnC. Otherwise go back to
step 1.

By trying all applicable method versions, a set of admissi-
ble configurations can be obtained. The set of postconditions
for the chosen configuration can be used to update the current
state, which then can be used as input for generating the
configuration following the current one (if any).

An example of a configuration description generated by the
planner is shown in Figure 6. This description is equivalent
to the second configuration in Figure 3.

(configuration
:functionalities
f-31 cross-door(robota, door1)
f-42 transform-info(door1, robota)
f-47 measure-robot(door1, robota)
f-46 camera(door1, robota)

:channels
local(door1, f-46, f-47,

image(door1, robota))
local(door1, f-47, f-42,

pos(robota, door1),
orient(robota, door1))

global(door1, robota, f-42, f-31,
pos(robota, door1),
orient(robota, door1))

)

Fig. 6. A configuration description generated by our planner.

Generally, there are several configurations that can address
a problem. Our planner generate descriptions for all admis-
sible configurations. Obviously, only one configuration per
problem can be performed at the time. In order to choose the
”best” configuration to execute, the costs for configurations
need to be considered. Currently, we compute the cost as
a weighted sum of the number of components used (robots
involved, functionalities, global and local channels).

The planning takes place on the robot that has the infor-
mation goal. The selected configuration description is then
implemented in two steps. First, the different functionalities
and channels are distributed according to their location para-
meter (e.g. in the configuration description above, cross-door
should be executed byrobota). Then each robot launches a
process for executing its assigned functionalities and sets up
its channels.

Even thought the example we use to describe our approach
is simple, our system is able to generate configurations for
more complex problems. In the area of object transportation
we have addressed two tasks with our configuration planner.
The first task is considering two robots carrying a bar. The
second tasks involves three robots building a wall with several
wall blocks. In this task, two robots are pushing a wall block
together and a third robot is guiding them in order to get the
block aligned with the rest of the wall. Both tasks require
tight coordination between the involved robots.

V. EXPERIMENTS

We have implemented the approach described above, and
we have conducted a series of experiments using a pair of
real robots equipped with different sensors. These exper-
iments were also aimed at assessing the mechanisms for
the switching between configurations. In these experiments,
however, we do not automatically monitor the quality of
configurations during execution: the decision about when to
switch configuration is done manually. The state given to the
planner is not updated during execution.

We report here a representative experiment based on the
third and fourth configurations in Figure 3. The platforms

Fig. 7. RobotB is guiding robotA through the door.

used were two Magellan Pro robots from iRobot, shown in
Figure 7. Each robot runs an instance of the layered hybrid
architecture Thinking Cap, based on [18].

Both robots are equipped with compasses and fixed color
cameras. They have additional sensors (e.g., sonars, laser,
and an electronic nose) not used in this experiment. The
environment consists of two rooms (R1 and R2) with a door
connecting them. The door and the robots have been marked
with uniform colors in order to simplify the vision task (see
Figure 7).

The following scenario describes how the two configura-
tions were used, and demonstrates the importance of being
able to reconfigure dynamically. RobotA and robotB are
in room R1. RobotA wants to go from room R1 to room
R2. Since the camera onA is fixed and it has a narrow field
of view, the robot cannot see the edges of the door when it
is close to it. Therefore, robotA is not able to perform the
action on its own. RobotB is equipped with the same sensors
as robotA, but since robotB is not crossing the door it is
able to observe both the door and robotA from a distance
during the whole procedure. We therefore configure our team
according to the third configuration in Figure 3, and execute
the task. RobotA continuously receives information about the
position and orientation during the execution of “cross-door”.

When robotA enters room R1 it signals that the task is
accomplished. This signal is received by robotB and the
current configuration is played out. Next, robotB is assigned
the task of going from room R1 to room R2. The same
configuration as before is used to solve this task, but with
the roles exchanged — i.e., robotA is now guiding robotB.
This time, however, during the execution of the “cross-door”
behavior a compass fails due to a disturbance in the magnetic
field. This makes the current configuration not admissible,
and a reconfiguration is necessary to proceed. The fourth
configuration in Figure 3 is still admissible even with no
compass, and we therefore use this one to carry out the
remaining part of the task. Figure 8 shows the trajectories
performed by the robots in a sample run of this experiment. In
the picture, robotA is standing still at the observing position

Fig. 8. RobotA and B have both reached room R2. Circles show robot
A’s trajectory and dots show robotB’s trajectory.

and robotB has just accomplished its task.

VI. D ISCUSSION

We have presented a general approach to automatically
synthesize a team configuration using knowledge-based tech-
niques. Our approach combines resources and functionalities,
residing in different robots, into a functional configuration,
in which the robots cooperate to generate the information re-
quired to perform a certain task. Configurations are generated
automatically using a hierarchical planner. Other techniques
could be used, e.g., a constraint satisfaction system [12].
However, we expect that the use of a hierarchical planner
will make it easier to scale up our approach to more complex
scenarios, and to deal with the problem of when and how to
change (replan) a configuration.

An interesting point to note is the relation between our
functional configurations and task assignment. As it can be
seen in the above experiment, configuration generation is used
after a task is assigned to a robot, and it concerns the problem
of deciding if and how that task can be executed cooperatively
with the help from other robots. A related problem is how to
motivate the robots involved in a configuration to commit
to it, and to stay committed during the entire execution. For
example, in the experiment above, we must guarantee that the
observing robot does not run away from the scene. For most
tasks, robots are motivated by the individual or the team goals.
However, if the task is beneficial only to another individual,
as in the case of robots that help each other, it may be harder
to motivate a commitment. Task assignment, commitment and
functional configurations all address different aspects ofthe
multi-robot cooperation problem. In our work, we concentrate
on the last one.

With respect to the three objectives stated in the intro-
duction, we note that we not yet addressed the third one:
how to monitor the performance of a configuration while
executing it. Such a monitoring process is important since it
enables replanning and configuration switching. Our current
work aims at extending the configuration evaluation process
using costs to include run-time monitoring and dynamic
reconfiguration.

The next important step will be to consider sequences, or
plans, of configurations, in order to address more complex
tasks. Our current system only considers the generation of
configurations for performing one step of a particular task,
and cannot deal with situations requiring several steps. Inour
box pushing example, if a second box is blocking the door,
a configuration for removing that box would have to precede
the configuration for getting the first box through the door.
We are investigating the extension of our planning techniques
to generate plans involving sequences of configurations.

ACKNOWLEDGMENTS

This work was supported by the Swedish National Graduate
School in Computer Science (CUGS), the Swedish Research
Council (Vetenskapsrådet), and the Swedish KK Foundation.

REFERENCES

[1] M. Benoit, I. Guillaume, G. Malik, and I. Felix. Robel: Synthesizing
and controlling complex robust robot behaviors. InProceedings of
the Fourth International Cognitive Robotics Workshop, (CogRob 2004),
pages 18–23, August 2004.

[2] G. Boella. Norms and cooperation: Two sides of social rationality. In
H. Hexmoor, C. Castelfranchi, and R. Falcone, editors,Agent Autonomy.
Kluwer, Boston/Dordrecht/London, 2003.

[3] S. Botelho and R. Alami. M+: a scheme for multi-robot cooperation
through negotiated task allocation and achievement. InProceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
pages 1234–1239, 1999.

[4] L. Chaimowicz, M. Campos, and V. Kumar. Dynamic role assignment
for cooperative robots. InProc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 293–298, 2002.

[5] S. A. Chien and H. B. Mortensen. Automating image processing for
scientific data analysis of a large image database.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(8):854–859, 1996.

[6] E.H. Durfee, V.R. Lesser, and D.D. Corkill. Coherent cooperation
among communicating problem solvers. In A.H. Bond and L. Gasser,
editors,Readings in Distributed AI, pages 268–284. Morgan Kaufmann,
San Mateo, CA, 1988.

[7] T. Fukuda and S. Nakagawa. Approach to the dynamically reconfig-
urable robot systems.Intelligent Robtics Systems, 1:55–72, 1988.

[8] B.P. Gerkey and M.J. Matarić. Sold!: Auction methods for multi-
robot coordination. IEEE Transactions on Robotics and Automation,
18(5):758–768, October 2002.

[9] B.P. Gerkey and M.J. Matarić. Multi-Robot Task Allocation: Analyzing
the Complexity and Optimality of Key Architectures. InProceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
Taipei, Taiwan, May 2003.

[10] L. Gong and A.C. Kulikowski. Composition of image analysis
processes through objectcentered hierarchical planning.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 17(10), 1995.

[11] J. S. Jennings and C. Kirkwood-Watts. Distributed mobile robotics by
the method of dynamic teams. InProc. of the Intl. Symp. on Distributed
Autonomous Robotic Systems (DARS), Karlsruhe, Germany, 1998.

[12] V. Kumar. Algorithms for constraints satisfaction problems: A survey.
AI Magazine, 13(1):32–44, 1992.

[13] F. Mondada, M. Bonani, S. Magnenat, A. Guignard, and D. Floreano.
Physical connections and cooperation in swarm robotics. InProc. of the
8th Int. Conf. on Intelligent Autonomous Systems (IAS8), pages 53–60.
IOS Press, 2004.

[14] D. Nau, Y. Caoand, A. Lothem, and H. Munoz-Avila. SHOP: simple
hierarchical ordered planner. InProc. of the Int. Joint Conf. on Artificial
Intalligence IJCAI, pages 968–973, 1999.

[15] L. Parker. ALLIANCE: An architecture for fault tolerant multi-robot
cooperation.IEEE Trans. on Robotics and Automation, 14(2), 1998.

[16] L. Parker, B. Kannan, F. Tang, and M. Bailey. Tightly-coupled navi-
gation assistance in heterogeneous multi-robot teams. InProceedings
of IEEE International Conference on Intelligent Robots andSystems
(IROS), 2004.

[17] D.V. Pynadath and M. Tambe. Automated teamwork among heteroge-
neous software agents and humans.Journal of Autonomous Agents and
Multi-Agent Systems, 7:71–100, 2003.

[18] A. Saffiotti, K. Konolige, and E. H. Ruspini. A multivalued-logic
approach to integrating planning and control.Artificial Intelligence,
76(1-2):481–526, 1995.

[19] O. Shehory and S. Kraus. Methods for task allocation viaagent coalition
formation. Artificial Intelligence, 101:165–200, 1998.

[20] C. Shekhar, S. Moisan, R. Vincent, P. Burlina, and R. Chellappa.
Knowledge-based control of vision systems.Image and Vision Com-
puting, 17:667–683, 1998.

[21] R. Simmons and D. Apfelbaum. A task description language for robot
control. In Proceedings of the Conference on Intelligent Robotics and
Systems, Vancouver Canada, October 1998.

[22] R. Simmons, S. Singh, D. Hershberger, J. Ramos, and T. Smith.
First results in the coordination of heterogeneous robots for large-
scale assembly. InProceedings of the International Symposium on
Experimental Robotics (ISER), Honolulu Hawaii, December 2000.

[23] P. Stone and M. Veloso. Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork.
Artificial Intelligence, 110(2):241–273, 1999.

[24] I. J. Timm and P-O Woelk. Ontology-based capability management for
distributed problem solving in the manufacturing domain. In M. Schillo
and et al., editors,Multiagent System Technologies – Proceedings of the
First German Conference, (MATES 2003), pages 168–179. Springer
Verlag, September 2003.

[25] D. Vail and M. Veloso. Multi-robot dynamic role assignment and
coordination through shared potential fields. In A. Schultz, L. Parker,
and F. Schneider, editors,Multi-Robot Systems. Kluwer, 2003.

[26] B. B. Werger and M. J Matarić. Broadcast of local eligibility for multi-
target observation. In L. E. Parker, G. Bekey, and J. Barhen,editors,
Distributed Autonomous Robotic Systems, pages 347–356. Springer
Verlag, 2000.

