
Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence (IJCAI-01)
(Seattle, WA, 2001) pp. 407-412

Perceptual Anchoring of Symbols for Action

Silvia Coradeschi and Alessandro Saffiotti
Center for Applied Autonomous Sensor Systems

Örebro University, S-70182̈Orebro, Sweden
http://www.aass.oru.se

silvia.coradeschi@aass.oru.se, alessandro.saffiotti@aass.oru.se

Abstract

Anchoring is the process of creating and maintain-
ing the correspondence between symbols and per-
cepts that refer to the same physical objects. Al-
though this process must necessarily be present
in any symbolic reasoning system embedded in a
physical environment (e.g., an autonomous robot),
the systematic study of anchoring as a clearly sep-
arated problem is just in its initial phase. In this
paper we focus on the use of symbols in actions
and plans and the consequences this has for anchor-
ing. In particular we introduce action properties
and partial matching of objects descriptions. We
also consider the use of indefinite references in the
context of action. The use of our formalism is ex-
emplified in a mobile robotic domain.

1 Introduction
The focus of this paper is the connection between abstract-
and physical-level representations of objects in artificial au-
tonomous systems embedded in a physical environment. We
call anchoring the process of creating, and maintaining in
time, this connection.

Anchoring must necessarily occur in any physically em-
bedded system that comprises a symbolic reasoning compo-
nent. A typical example is the problem of connecting, inside
an autonomous robot, the symbol used by a symbolic planner
to refer to a physical object to the data in a perceptual sys-
tem that pertains to the same object. This connection must be
dynamic, since the same symbol must be connected to new
percepts when the same object is re-acquired. For instance, a
robot may be asked to identify and track a specific person in
a crowd using visual data and given a linguistic description.

Anchoring is related tosymbol grounding, defined as the
problem of how to give an interpretation to a formal sym-
bol system that is based on something that is not just another
symbol system[Harnard, 1990]. Anchoring is an important
special case of symbol grounding where the symbols denote
individual physical objects.

The recognition of the anchoring problem as a problemper
se is a recent phenomenon. Although all existing robotics
systems that comprise a symbolic reasoning component im-
plicitly incorporate a solution to the anchoring problem, this

solution is typical hidden in the code, and it is developed on
a system by system basis on a restricted domain. To the best
of our knowledge, the first domain independent definition of
the anchoring problem was given in[Saffiotti, 1994], while
the first attempt at a computational theory of anchoring was
reported in[Coradeschi and Saffiotti, 2000]. The goal of this
theory was to specify the functionalities and the representa-
tions needed to perform anchoring in a general way, that is
applicable to a large number of systems.

In this paper, we focus on one specific aspect of anchoring:
the use of symbols to denote objects in actions and plans, and
the anchoring of these symbols to objects in the world. Con-
sider the action ‘PickUp(A).’ We are interested in the prob-
lem of how to anchor the symbol ‘A’ to the relevant physi-
cal object through perception. To do this, we start from the
above theory of anchoring, and extend it in three ways. First,
we make a distinction between the properties of ‘A’ which
are needed toidentify the physical object to be used for the
action, and those which are needed toperform the action.
Second, we introduce the concept ofpartial matching, where
‘A’ can be (tentatively) anchored to an object whenever a re-
quired perceptual property cannot be extracted from the sen-
sor data. Third, we consider the use ofindefinite references
in the context of action. Definite references, like “theblack
suitcase,”are meant to refer to one specific object with given
properties, while indefinite ones, like “a black suitcase” are
meant to refer to an arbitrary object in a given class[Russell,
1905].

In order to clarify the use of anchoring, we show two exper-
iments performed on a real robot. These examples illustrate
how anchoring can be integrated in a robot architecture, and
how its functionalities can be used to to connect the symbols
used by a planner to the data acquired by a vision system.
The examples also show the essential difference between two
ways to treat actions that involve an indefinite reference. This
reference can be resolved by the symbol system (planner), or
by the anchoring process.

2 A Basic Model of Anchoring
We summarize here the basic elements of the computational
theory of anchoring defined in[Coradeschi and Saffiotti,
2000]. The theory considers an agent that includes a symbol
system and a perceptual system, and it focuses on the prob-
lem of creating and maintaining a correspondence between



Figure 1: Two percepts extracted from a camera image.

symbols and percepts that refer to the same physical object.
It consists of a static part and a dynamic part. The static part
includes the following.� A symbol system� including: a setX = fx1; x2; : : :g

of individual symbols (variables and constants); a setP = fp1; p2; : : :g of predicate symbols; and an infer-
ence mechanism whose details are not relevant here.� A perceptual system� including: a set � =f�1; �2; : : :g of percepts; a set� = f�1; �2; : : :g of at-
tributes; and perceptual routines whose details are not
relevant here. A percept is a structured collection of
measurements assumed to originate from the same phys-
ical object; an attribute�i is a measurable property of
percepts, with values in the domainDi. We letD =Si Di.� A predicate grounding relationg � P � � � D, that
embodies the correspondence between unary predicates
and values of measurable attributes.

Example. � may be a planner that includes the individual
symbol ‘A’ and the predicate symbols ‘large’ and ‘small.’�
may be a vision system able to recognize suitcases: from
the image shown in Fig. 1,� may extract two percepts�1
and�2. Attributes computed by� may include ‘color’ and
‘width.’ The predicate grounding relationg may include the
triple hsmall;width; 10i: this says that the measure 10 for an
object’s observed width is consistent with the predication of
its being small.1

Theg relation concerns properties, but anchoring concerns
objects. The following definitions allow us to characterize
objects in terms of their (symbolic and perceptual) properties.

Definition 1 A symbolic description� 2 2P is a set of unary
predicates.

Definition 2 A perceptual signature : � ! D is a par-
tial function from attributes to attribute values. The set
of attributes on which is defined is denoted byfeat().� = (�! D) is the set of all.

Intuitively, a symbolic description lists the predicates that
are considered relevant to the perceptual recognition of an ob-
ject; and a perceptual signature gives the values of the mea-
sured attributes of a percept (and it is undefined for the re-
maining ones). Theg relation can then be used to define a

1For the sake of simplicity we consider here a very simpleg. Theg relation can be quite complex in real domains.

<   ,   ,    >γα = ^

areaγ(        ) = 300
hueγ(       ) = 10

Π

percepts

signatures

bag2

{red,small}descriptions

symbols

Σ

g
predicate
hue red

attribute value
0

... ... ...

hue
hue

red
orange

10
20

... ... ...

Figure 2: The elements of anchoring.

function match(�; ) that says whether or not the values in
the perceptual signature are consistent with a given sym-
bolic description�.

The dynamic part of the model tells us, at any timet, what
properties are associated to symbols in�, and what attribute
values are associated to percepts in�.� A description stateDSt : X ! 2P that associates each

individualx with its symbolic description at timet.� A perceptual statePSt : � ! � that associates each
percept� 2 � to its perceptual signature at timet. If� is not perceived at timet, thenPSt(�) is everywhere
undefined. The set of percepts which are perceived att
is denoted byVt.

Example. Consider our previous example. At timet, the
symbol system may associate property ‘small’ to symbol ‘A’
by havingsmall 2 DSt(A). The perceptual system may
extract the width of the two percepts in the image, and asso-
ciate them with the perceptual signaturesPSt(�1) = 1 and
PSt(�2) = 2 such that1(width) = 10 and2(width) = 20.

The role of anchoring is to establish a correspondence be-
tween a symbolx used in the symbol system to denote an
objectin the world, and a percept� generated in the percep-
tual system by the same object. This is done by comparing
the symbolic descriptionDSt(x) and the perceptual signature
PSt(�) via thematchfunction, hence via theg grounding re-
lation. In the previous example, theg relation includes the
triple hsmall;width; 10i, therefore the description of ‘A’ and
the perceptual signature of�1 can be matched, thus suggest-
ing that the symbol ‘A’ might be anchored to the percept�1.

The above correspondence is reified in an internal data
structure�, called anchor. Since new percepts are gener-
ated continuously within the perceptual system, this corre-
spondence is indexed by time.

Definition 3 Ananchor� is any partial function from time to
triples inX ��� �.

At every momentt, �(t) contains: a symbol, meant to
denote an object inside�; a percept, generated inside� by
observing that object; and a signature, meant to provide the
(best) estimate of the values of the observable properties of
the object. We denote these components by�symt ; �pert ; and�sigt , respectively. If the object is not observed at timet, then�pert is the ‘null’ percept?, and�sigt still contains the best
available estimate. Intuitively, an anchor can be seen as an
internal, sensori-motor level representation of a physical ob-
ject — see Fig. 2.



In order for an anchor to satisfy its intended meaning, the
symbol and the percept in it should refer to the same physical
object. This requirement cannot be formally stated inside the
system. What can be stated is the following.

Definition 4 An anchor� is groundedat timet iff �pert 2 Vt.
We informally say that an anchor� is referentially cor-

rect if, whenever� is grounded at t, then the physical object
denoted by�symt is the same as the one that generates the per-
ception�pert . Theanchoring problem, then, is the problem to
find referentially correct anchors.

3 Extending the Model
The above model provides the basic ingredients of a general
theory of anchoring, with no assumption as to the task for
which anchoring is performed. In this paper, however, we fo-
cus on the use of anchoring to connect symbols for actions
to physical objects through perception. From this perspec-
tive, the anchoring process should make sure that the anchor:
(i) represents a physical object which has the intended prop-
erties for the intended action, and (ii) contains information
about the perceptual properties which are needed in order to
perform the action. For instance, if the action is meant to pick
up a green suitcase, then the anchor should represent an ob-
ject which is a green suitcase, and its signature should include
an estimate of the position and orientation of this suitcase.

3.1 Action properties
The matchfunction makes sure that the anchor is adequate
with respect to the properties stored in the description state,
i.e., DSt(A). In order to make sure that the anchor’s signa-
ture also contains the properties that are relevant for action,
we extend the dynamic part of our model by including the
following.� An action parameter stateAt : X ! 2P that associates

each individualx with the set of properties that need to
be known in order to act on the object denoted byx.

In our example,At(A) would specify the position and ori-
entation of the suitcase. In the following we callmatching
propertiesthe set of predicates inDSt(A) andaction proper-
tiesthe set of predicates inAt(A)

Note that the predicates inAt are not used in the matching
process: these predicates only indicate that the corresponding
attributes must be included in the anchor’s perceptual signa-
ture. However, these predicates can be used asdefault as-
sumptionsabout the expected properties of the object in order
to start action before the object is actually perceived. For in-
stance, we may have an expectation about the position of a
suitcase: this expectation can be included in the signature of
the anchor in order to start approaching that position until the
actual suitcase is perceived. These expectations can also be
used to focus the perceptual system.

Having a property in the action state or in the description
state may affect the meaning of an action. In our “PickUp(A)”
example, if the position is not included in the description
state, then ‘A’ will be anchored to any green suitcase, irre-
spective of its position. If the position of a given suitcase

in included in the description state, then ‘A’ will only be an-
chored to the specific suitcase at that position. The first setup
encodes the action “pick upa green suitcase,” while the sec-
ond one encodes the action “pick upthegreen suitcase at the
given position”[Saffiotti, 1994]. Note that the object of the
action is denoted by an indefinite reference in the first case,
and by a definite one in the second case.

3.2 Partial Matching
Some actions may affect the perceptual information which is
gathered by the agent: for instance, moving closer to an ob-
ject may allow the perceptual system to observe more proper-
ties of the object. For example, suppose that we are interested
in a suitcase with a white label on it: depending on the dis-
tance and angle of the suitcase, the label may not be visible.

Recognizing the fact that not all attributes of a percept
may be extracted at all times brings about the need to rede-
fine the meaning of thematchfunction: match(�; ) should
check that the signature is consistent with the descriptor�
for those attributes which have actually been observed, but it
should ignore the ones which have not been observed. The
following is a possible way to define thematchfunction.

match(�; ) = � ; if 9p 2 �: (obs(p; ) ^ :cons(p; ))fp 2 � j obs(p; )g otherwise

where

obs(p; ) , 9� 2 feat():9d 2 D:g(p; �; d)
cons(p; ) , 9� 2 feat():g(p; �; (�))

Intuitively, obs(p; ) says that an attribute related top (via
the g relation) has been observed in, andcons(p; ) says
that the observations in are consistent with thep predicate
according tog. match(�; ) returns; if there was a mismatch
between some predicate in� and the observed values; other-
wise it returns the subset of the predicates in� for which a
(consistent) value has actually been observed.

It is useful to keep track of which of the predicates in the
symbolic description for a symbol have actually been ob-
served, and which ones have not. To do this, we extend the
definition of an anchor to include a list of the observed pred-
icates as follows.

Definition 3 (bis) An anchor is any partial function from
time to tuples inX ��� �� 2P .

We write�obs to denote the fourth element of an anchor�(t).
4 The Functionalities of Anchoring
In order to turn the above model into a useful computa-
tional framework, we need to define which functionalities are
needed in order to solve the anchoring problem for a given
symbol x. In [Coradeschi and Saffiotti, 2000] three main
functionalities have been identified: (i) to create a grounded
anchor the first time that the object denoted byx is perceived;
(ii) to update the anchor when we need to reacquire the ob-
ject after some time that it has not been observed; and (iii) to
continuously update the anchor while observing the object.
Given the above extensions to the model, these functionali-
ties can be defined as follows. (t denotes the time at which
the functionality is called.)



Find Take a symbolx and return a grounded anchor defined
att, and undefined elsewhere. In case of multiple match-
ing percepts, return one anchor for each of them. This is
summarized by the following pseudo-code.

procedureFind (x; t)� f� 2 Vt j match(DSt(x);PSt(�)) 6= ;g
if � = ;

then fail
else for�i 2 f�1; : : : ; �ng = ��i  match(DSt(x);PSt(�i))i  Attributes(At(x);PSt(�i); �i)�i(t) hx; �i; i; �ii

return f�1; : : : ; �ng
The Attributes function returns the part of the percep-
tual signaturePSt(�i) that only includes the “interest-
ing” attributes, that is, those that correspond to either
description properties or to action properties. (A spe-
cific implementation may also include attributes which
are needed by the perceptual system to track the object,
e.g., its position and velocity.)

Reacquire This function is used to find an object when there
is a previous perceptual experience of it. Take an anchor� defined at timet � k and extend�’s definition to t.
First, predict a new signature; then see if there is some
new percept that is compatible with the prediction and
the symbolic description; in case of multiple matching
percepts, use a domain dependent selection function. If
one percept is found, update. Prediction, verification
of compatibility, and updating are domain dependent;
verification should typically usematch.

procedureReacquire (�; t)x �symt�k� ;  Predict(�sigt�k; x; t)� Selectf�0 2 Vt j Verify(DSt(x);PSt(�0); ) 6= ;g
if � 6=? then � Verify(DSt(x);PSt(�i); )  Update(;PSt(�);DSt(x))�(t) hx; �; ; �i

return �
If Reacquire fails to find a matching percept, then�(t)
contains the predicted signature and the ‘null’ percept?. Note that in this case�(t) is not grounded.

Track Take an anchor� defined fort� 1 and extend its def-
inition to t. It is used in the special case of reacquisition
whenever the object is kept under constant observation.
Prediction is in general much simpler than in the Reac-
quire case, and verification is only made with respect to
the previously perceived attributes via a domain depen-
dent function MatchSignature. This functionality could
for instance be implemented with a Kalman filter.

procedureTrack (�)x �symt�1  OneStepPredict(�sigt�1; x)� Selectf�0 2 Vt j MatchSignature(;PSt(�0)) 6= ;g
if � 6=? then   Update(;PSt(�); x)

Anchoring

World

actions
perceptual actions

& Executor
Plan generator

action

state

status

module

symbols

objects
info

signatures

symbols

Navigation

modulemodule

Vision 
data

Robot

info

commands

Modeler

Figure 3: The robot architecture used in our examples.�(t) hx; �; ; �obsi
return �

Notice that the anchor(s) computed always include the best
current estimate of the observable properties needed to per-
form the actions (), and an indication of which parts of the
symbolic description have actually been observed (�). The
next section will show two examples of use of anchoring that
further clarify the role of this information.

5 Examples
In this section we present two examples of anchoring with
indefinite references implemented in a robotic system. The
robot, a Nomad 200, uses sonars for navigation and vision
data to identify objects in the environment. The two-layered
decision making architecture of the robot is shown in Fig. 3.

The higher layer includes a plan generator (ETLplan), a
plan executor, and a world modeler. ETLplan is a conditional
planner capable of generating plans with perceptual actions
and conditional branches[Karlsson, 2001]. The plan execu-
tor checks the conditions and invokes the actions in the plans
generated by the planner. The world modeler maintains infor-
mation about objects and places relevant for the task. It can
obtain additional information about objects from the anchor-
ing module.

The lower layer includes a navigation and a vision module.
The navigation module is a simplified version of the fuzzy
behavior-based controller defined in[Saffiotti et al., 1995],
which executes the actions sent by the plan executor. An
example of an action is(gonear A). The vision module
contains vision routines for recognizing objects and for cal-
culating properties such as color and size.

The anchoring module provides the connection between
the symbols used by the planner and the world modeler, and
the perceptual data provided by the vision module and used
by the navigation module. It receives requests to create and
update anchors and it provides the relevant information about
the anchored symbols to the world modeler. It is in this mod-
ule that theg function is encoded. In addition, the naviga-
tion module uses the symbols that constitute the arguments to
its actions when requesting information from the anchoring
module about the corresponding objects. For instance while
executing the action(gonear A), it regularly requests the
position ofA. Finally, the anchoring module controls the vi-
sion processing, activating routines for recognizing objects
and providing parameters (e.g., expected position) to focus
perceptual attention.



Figure 4: The initial setup in the first example.

5.1 Anchoring with partial matching
This example has the aim to show how the anchoring module
works in practice and in particular the use of partial matching.
It also serves to illustrate one way to handle indefinite refer-
ences. The robot has the task to “find a black suitcase with a
white mark and to go near it”. The initial scenario is shown
in Fig. 4. The largest suitcase is green, while the other three
suitcases are black. The world model contains information
about three objects: the two small black suitcases, identified
in the world model by the symbols C (the one on the right)
and B (the one on the left), and the green suitcase identified
by the symbol A.

The goal given to the plan generator has the form
(exists(?x)(and(suitcase?x)(black?x)
(white-mark?x)(near?x))), that is, the goal is to
be near to a black suitcase with a white mark. The world
modeler contains the information that both B and C are black
suitcases, but does not have information about the mark.
Therefore, the plan generator creates a plan that consists of
first going near suitcase C and looking for the mark. If the
mark is found, the execution stops with success. Otherwise,
the robot goes near to suitcase B to look for the mark. Note
that the original indefinite reference (“a black suitcase with
a white mark”) has now been turned onto two alternative
definite references B and C. The actual plan is as follows:

((gonear C) (observe C)
(if ((white-mark C . true)) (:success))
(if ((white-mark C . false))

((gonear B) (observe B)
(if ((white-mark B . true)) (:success))
(if ((white-mark B . false)) (:fail)))))

Fig. 5 (left) schematically indicates the path followed by
the robot during plan execution. The robot goes first to suit-
case C, checks the mark ((observe C)), does not find it,
and goes to suitcase B where it successfully identifies a mark.

The navigation module, while executing(gonear C),
is regularly requesting the anchoring module to keep C an-
chored. The latter uses the track functionality to keep track
of C while the robot is moving.

The matching properties provided to the anchoring module
are the properties attached to the symbolC, such as color, po-
sition, and shape, and the fact that the suitcase should have a
white mark. The vision routines, due to the distance between
the camera and the suitcase, cannot discriminate if there is a
mark on suitcase C. A naive matching function might reject

B

A

C

B

A

Figure 5: An illustration of the path of the robot in the first
(left) and second (right) example.

this suitcase, given that one property is not satisfied. Partial
matching allows us to consider the case that the property is
actually not perceivable, and the suitcase is still anchored.

A final observation is that while the robot is moving to-
wards suitcase B, a third black suitcase, which was previously
occluded, is also perceived. However, this suitcase is ignored
because it does not match the perceptual signature (incl. po-
sition) of suitcase B.

5.2 Anchoring with indefinite references
This example shows the handling of indefinite references at
the level of the anchoring module, as opposed to at the higher
symbolic level in the previous example.

The task is to “go near a green suitcase and then go near
a black suitcase”. The world model contains initially two
suitcases, one green denoted by the symbol A and one black
denoted by B. In this case however the plan is to go near a
generic object that has the properties of being a green suitcase
and then to go near an object that has the properties of being a
black suitcase,((gonear x) (gonear y)).2 The dif-
ference is that the symbols used for action now do not denote
fixed specific objects, but any object in the class of objects
satisfying the given matching properties. In case of x, these
are black and suitcase. The positions of the two known ob-
jects are used as action properties, that is, they are used as an
initial value for thegonear action. However they are not
considered to be matching properties.

The path of the robot is illustrated in Fig. 5 (right). The
robot first moves successfully near the green suitcase. How-
ever, when it turns towards the black suitcase, this suit-
case has been removed. The robot starts moving toward the
recorded position of the black suitcase, as its position was
given as action property. While the robot moves, a previously
occluded black suitcase is perceived: the dotted suitcase in
the figure. This suitcase matches the required properties re-
quired as it is black. It is therefore anchored and the robot
goes near it. The fact that the position and the perceptual sig-
nature of this second black suitcase is different from those
of the first one does not constitute a problem; the anchoring
module just matches the percepts with the properties present
in the description state, even if it uses the expected position of
the first black suitcase to direct the perception and to provide
information to the navigation module.

2This plan, and the corresponding symbolic descriptors forx and
y, have been created by hand, because existing planning systems
only consider specific, previously known objects.



6 Discussion
The autonomous robotics and machine vision literature con-
tains a few examples in which the need and the role of an-
choring, under different names, has been explicitly identified,
e.g.,[Hexmooret al., 1993], [Saffiottiet al., 1995], [Jung and
Zelinsky, 2000], [Chellaet al., 1998], [Bajcsy and Kos̆ecká,
1994], [Satohet al., 1997], [Horswill, 1997], [Wassonet al.,
1999]. However, all the works above describe specific imple-
mentations and do not attempt a study of the general concept
of anchoring.

To our knowledge,[Coradeschi and Saffiotti, 2000] was the
first attempt to state the general anchoring problem in formal
terms. The main technical contribution of this paper is the ex-
tension of the above framework with the introduction of two
elements needed to deal with the anchoring of symbols in ac-
tions and plans. First we have introduced action properties,
that is properties that are used in the execution of an action,
but are not relevant for finding the correct object. Second,
we have introduced partial matching to be able to distinguish
between properties that are not satisfied and properties that
are not presently available for perception, that is one cannot
presently determine whether they are satisfied or not. As we
consider anchoring from an action perspective we can deal
with the latter case actively, for instance by observing the
object from a better position. Anchoring in the presence of
partial matching is actually tentative: if a property previously
not observed is observed at a later point and it is discovered
not to match the description, the anchor can be removed.

The problem of connecting linguistic descriptions of ob-
jects to their physical referents has been largely studied in the
philosophical and linguistic tradition. These traditions pro-
vide a rich source of inspiration for the conceptualization of
the anchoring problem. For instance[Russell, 1905] made a
distinction between definite and indefinite references. To this
respect our examples show two different ways to resolve an
indefinite reference in the context of an action. In the first ex-
ample, the planner resolves the indefinite reference (a black
suitcase with a mark) by instantiating a variable to known
matching objects in the world model, and then it uses defi-
nite references (B and C) in its actions. Note that in order
to handle the appearance of a new suitcase, it would be nec-
essary to re-plan. In the second example, the plan contains
indefinite references, which are sent as such to the anchoring
module. Instantiation is delegated to the anchoring module,
which is able to shift “on the fly” to the new suitcase. Note
that resolution of ambiguities might be more difficult in this
case, without the support of the high level reasoning.

The first approach seems to be suitable for relatively static
domains where there is the time to re-plan, while the second
approach seems to be more appropriate in highly dynamic
domains. In fact, we have used a similar approach in the
Sony AIBO robots in the RoboCup competition[Saffiotti and
LeBlanc, 2000]. This domain is highly dynamic, but there are
few ambiguities with respect of anchoring of objects.

Acknowledgements This work was funded by the Swedish KK
Foundation. We thank Lars Karlsson and Zbigniew Wasik for pro-
viding substantial help in running the robot experiments.

References
[Bajcsy and Kos̆ecká, 1994] R. Bajcsy and J. Kos̆ecká. The

problem of signal and symbol integration: a study of co-
operative mobile autonomous agent behaviors. InPro-
ceedings of KI-95, LNCS, pages 49–64, Berlin, Germany,
1994. Springer.

[Chellaet al., 1998] A. Chella, M. Frixione, and S. Gaglio.
An architecture for autonomous agents exploiting concep-
tual representations.Robotics and Autonomous Systems,
25:231–240, 1998.

[Coradeschi and Saffiotti, 2000] S. Coradeschi and A. Saf-
fiotti. Anchoring symbols to sensor data: preliminary re-
port. InProc. of the 17th National Conference on Artificial
Intelligence (AAAI-2000), pages 129–135, Austin, 2000.

[Harnard, 1990] S. Harnard. The symbol grounding prob-
lem. Physica D, 42:335–346, 1990.

[Hexmooret al., 1993] H. Hexmoor, J. Lammens, and S. C.
Shapiro. Embodiment in GLAIR: A grounded layered
architecture with integrated reasoning for autonomous
agents. InProc. of the Florida AI Research Sympos., pages
325–329, 1993.

[Horswill, 1997] I. Horswill. Visual architecture and cogni-
tive architecture.Journal of Experimental and Theoretical
Artificial Intelligence, 9(2):277–292, 1997.

[Jung and Zelinsky, 2000] D. Jung and A. Zelinsky.
Grounded symbolic communication between heteroge-
neous cooperating robots.Autonomous Robots journal,
8(3), 2000.

[Karlsson, 2001] Lars Karlsson. Conditional progressive
planning: a preliminary report. In B. Mayoh, J. Perram,
and H. Lund, editors,Proceedings of the Scandinavian
Conference on Artificial Intelligence 2001, 2001.

[Russell, 1905] B. Russell. On denoting.Mind, XIV:479–
493, 1905.

[Saffiotti and LeBlanc, 2000] A. Saffiotti and K. LeBlanc.
Active perceptual anchoring of robot behavior in a dy-
namic environment. InIEEE Int. Conf. on Robotics and
Automation, pages 3796–3802, 2000.

[Saffiottiet al., 1995] A. Saffiotti, K. Konolige, and E. H.
Ruspini. A multivalued-logic approach to integrating plan-
ning and control.Artificial Intelligence, 76(1-2):481–526,
1995.

[Saffiotti, 1994] A. Saffiotti. Pick-up what? In C. Bäckström
and E. Sandewall, editors,Current trends in AI Planning,
pages 266–277. IOS Press, Amsterdam, NL, 1994.

[Satohet al., 1997] S. Satoh, Y. Nakamura, and T. Kanade.
Name-it: Naming and detecting faces in video by the inte-
gration of image and natural language processing. InProc.
of IJCAI-97, pages 1488–1493, 1997.

[Wassonet al., 1999] G. Wasson, D. Kortenkamp, and
E. Huber. Integrating active perception with an au-
tonomous robot architecture.Robotics and Autonomous
Systems, 26:175–186, 1999.


