
Monitoring The Execution of Robot Plans

Using Semantic Knowledge

Abdelbaki Bouguerra and Lars Karlsson and Alessandro Saffiotti

AASS Mobile Robotics Lab, Örebro University, Örebro, Sweden

Abstract

Even the best laid plans can fail, and robot plans executed in real world domains
tend to do so often. The ability of a robot to reliably monitor the execution of plans
and detect failures is essential to its performance and its autonomy. In this paper, we
propose a technique to increase the reliability of monitoring symbolic robot plans.
We use semantic domain knowledge to derive implicit expectations of the execution
of actions in the plan, and then match these expectations against observations. We
present two realizations of this approach: a crisp one, which assumes deterministic
actions and reliable sensing, and uses a standard knowledge representation system
(LOOM); and a probabilistic one, which takes into account uncertainty in action
effects, in sensing, and in world states. We perform an extensive validation of these
realizations through experiments performed both in simulation and on real robots.

Key words: Plan Execution and Monitoring, Mobile Robots, Semantic Knowledge

1 Introduction

Plan-based control architectures have been widely used for the control of mo-
bile robots that are designed to achieve a multitude of complex tasks in real-
world environments [1–3]. A major challenge in plan-based control is how to
make sure that the actions in the plan are executed correctly and reliably.
Consequently, plan execution monitoring aims at detecting situations where
the actual outcome of an action diverts from the intended one. Model-based
approaches to plan execution monitoring are based on the idea of comparing
the explicit effects of each action (that is, the ones stated in the model of
that action) to what is observed after the execution of that action [4]. This

Email address: aba;lkn;asaffio@aass.oru.se (Abdelbaki Bouguerra and Lars
Karlsson and Alessandro Saffiotti).

Preprint submitted to Elsevier 15 June 2008

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

supposedly means that the effects to monitor are directly observable. For ex-
ample, a mobile robot that has executed the planned action (enter r1 d1),
to enter the living-room r1 through door d1, would query its self-localization
system to verify that the explicit expectation (robot-in r1) is indeed the
case. This way, execution monitoring completely relies on the accuracy of the
self-localization system. In this article, we propose to increase the reliability of
execution monitoring by incorporating more advanced forms of reasoning. In
particular, we propose to use semantic knowledge about the domain to derive
implicit expectations about the effects of actions, and to monitor these expec-
tations. By implicit expectations we mean expectations that can be logically
derived from the explicit ones through the use of semantic knowledge 1 . In
the above example, since r1 is an instance of the class Living-Room, the robot
should expect to see objects that are typical of a living-room, such as a TV-set
and a sofa. If the robot sees an oven, it should conclude that it is not in the
living-room, and henceforth that the execution of (enter r1 d1) has failed.
Another example is grasping a coffee cup: semantic knowledge can be used to
generate and check the implicit expectation that the object in the gripper has
properties such as being a container and having exactly one handle.

In this paper, we define the notion of Semantic Knowledge-based Execution
Monitoring (SKEMon), and we propose a general algorithm for it based on
the use of description logics for representing knowledge. We also develop a
second process to take into account probabilistic uncertainty both in acting
and sensing. In particular, we allow for sensing to be unreliable, for action
models to have more than one possible outcome, and we take into consideration
uncertainty about the state of the world. This is essential to the applicability
of our technique, since uncertainty is a pervasive phenomenon in robotics.

This article builds upon and consolidates our previous work on semantic
knowledge-based execution monitoring [5,6]. In addition, this article reports
a new extensive experimental evaluation of two processes of our monitoring
approach: a crisp (boolean) process, and a probabilistic process. These exper-
iments show that the use of semantic knowledge contributes to more reliable
execution monitoring. They also show that the crisp version mainly works by
finding counter evidence, while the probabilistic version is able to better take
positive evidence into account. The systematic evaluation was performed in
simulation, but we also include experiments to demonstrate that our approach
can be made operational on a real robot.

The paper is organized as follows. In section 2, we review related work in
plan execution monitoring. In sections 3 and 4, we describe our two execution

1 Implicit expectations could also be taken into account inside the planning pro-
cess. This, however, would greatly increase the complexity of the planner. In our
approach, implicit expectations are computed at execution-time.

2

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

monitoring processes: crisp and probabilistic. We present our experimental
validation in section 5 and conclude in section 6.

2 Related Work

To the best of our knowledge, no published research work has used semantic
domain-knowledge to derive and monitor implicit expectations related to the
correct execution of robot plans. In this section, we review research work that
has addressed execution monitoring of mobile robot actions from one point or
another. As mentioned above, traditional approaches focus on comparing the
model-based and the actual states of the world. In general, predefined models
are used to describe the outcomes of an action when executed successfully.
Examples of architectures in this category include the PLANEX system [1], the
LAAS architecture [2,7], and ROGUE [8]. Using only action models allows only
the verification of effects explicitly encoded in those models. In our work, we
focus on monitoring conditions that are not explicitly encoded in the models of
the planning actions. To achieve this, we use extra general domain-knowledge
to derive and very implicit expectations that are consequences of the explicit
effects of actions. It should be noted that there are monitoring approaches that
do not use explicit models at all. For instance, Pettersson et al. [9] propose
to let robots learn to recognize patterns of behavior activation that indicate
failure.

There are some execution monitoring approaches that use logic formalisms to
describe the dynamics of the environment. However, these approaches focus
on the explicit effects of actions. An example of a logic-based approach is
the work of De Giacomo et al. [10] describing a process for monitoring the
execution of robot programs written in Golog. The working of Golog is based
on the Situation Calculus, which is a logical formalism for reasoning about
the consequences of actions. The execution monitor compares what the robot
expects and what it senses to detect discrepancies and recover from them.
Discrepancies are assumed to be the result of exogenous actions. The recovery
is done through a call to a planner to produce a Golog program consisting of
a sequence of actions that locally transform the current situation to the one
expected by the original program before it failed. The work by Fichtner et al.
[11] employs the Fluent Calculus, a logical action formalism, to model actions
and their effects. Besides detecting discrepancies, the authors describe how
such a formalism can be used to provide explanations of why failures occurred,
which can be useful to recover from such failures. Lamine and Kabanza propose
to use Linear Temporal Logic (LTL) with fuzzy semantics to encode knowledge
about successful execution of robot actions [12]. Such knowledge is used by
the monitoring process to check the correct execution of the robot actions by
considering not only present execution information, but also past one.

3

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Reactive execution systems implementing the BDI model, such as PRS [13],
RAPS [14], and the commercial JACK system [39] typically use hand-coded
procedures to monitor events that might affect the execution of the agent ac-
tions. Consequently, expectations are explicitly coded in the monitoring pro-
cedure. Thus handling new events implies writing new monitoring procedures.
Regarding plan execution monitoring under uncertainty, we cite the work by
Fernández et al. [15] where Partially Observable Markov Decision Processes
(POMDP) are used to generate action policies that include detecting and re-
covering from unexpected situations. In a related work by Verma et al. [16],
Bayesian filtering techniques are employed to detect and diagnose exceptional
situations caused by hardware faults in planetary rovers. In comparison, we
handle uncertainty at execution time by taking into account only the different
possible outcomes of the executed action.

There are also other approaches that monitor conditions other than the ex-
plict effects of actions. For instance, Fraser et al. [17] describe an approach that
considers monitoring plan invariants, i.e., environment conditions that have
to hold during the whole execution episode of a plan; Fernández and Simmons
[18] use a hierarchy of monitors designed to detect symptoms of specific ex-
ceptional situations; Beetz and McDermott [19] propose to debug plans while
they are executed to prevent probable execution failures. The Rationale-Based
Monitoring approach [20] monitors features of the environment that can affect
the plan under construction.

The work by Galindo et al. presented in [21] focuses on connecting spatial
information in maps to semantic information. Navigation tasks use semantic
information to respond to human requests by inferring which spatial infor-
mation of the map the robot should employ to achieve the task. The authors
also briefly illustrate the use of semantic knowledge to detect some failures in
navigation tasks, but they do not explore plan execution monitoring.

3 Semantic Knowledge in Execution Monitoring

Semantic knowledge refers to knowledge about objects, their classes and how
they are related to each other (this knowledge is sometimes called “ontolog-
ical”). For instance, an office is a concept that refers to rooms that have at
least one desk and a chair; the entities desks and chairs are themselves defined
as pieces of furniture, etc. Semantic knowledge can be used by mobile robots
to help them communicate with humans [22], to analyze scenes [23], and to
build maps [21,24]. We use semantic knowledge in the process of monitoring
the execution of symbolic plans, i.e., actions that use symbols to refer to phys-
ical objects. An example of such an action is (pick-up c) where c is a symbol
that refers to a cup. The robot can use knowledge that cups are containers

4

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Execution
Monitor

Perception

Execution

SKB
(Loom)

Planning status

action

model

answers

assertions/

queries

controls

sensing

data

percepts

state

Fig. 1. The different modules involved in monitoring implicit expectations (only the
arrows relevant to execution monitoring are shown).

that have one handle to detect incorrect execution situations whenever the
grasped object does not have exactly one handle.

Figure 1 shows the different modules involved in monitoring the execution of
symbolic plans using semantic knowledge. The execution module keeps track
of the current plan and its execution context. It also keeps track of the current
estimated state including the current expected location of the robot. It is in
charge of translating the high-level actions into executable processes. The per-
ception module provides the monitoring module with perceptual information
computed from the raw data coming from the robot’s on-board sensors such
as camera and laser. The perceptual information is expressed in a symbolic
form that describes objects and their observable properties (e.g., color, shape,
marks, and relative position). The planning module provides the monitoring
module with the model of the action whose execution is to be monitored.
This model specifies the preconditions that should hold in the real world for
the action to be applicable. The model specifies also the explicit effects of
the action that should result when the action is executed. The explicit effects
are divided into negative and positive effects. Negative effects express condi-
tions that should not hold, while positive effects encode conditions that should
hold when the action is executed successfully. The role of the semantic knowl-
edge base (SKB) is to store general and assertional domain knowledge. It also
processes and answers queries related to its contents. Finally, the monitoring
module itself is in charge of making sure that actions are executed success-
fully, by comparing the expected consequences of an action to what has been
perceived by the perception module.

3.1 Representing Semantic Knowledge

We opted for description logics (DLs) [25] to represent and reason about se-
mantic knowledge, since they provide a good trade-off between representation
power and reasoning tractability. An important characteristic of DLs is their
reasoning capabilities of inferring implicit knowledge from the explicitly rep-

5

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

resented knowledge. In DL formalisms, unary predicates represent concepts
(also called classes), i.e., sets of individuals, and binary predicates express
relationships between individuals.

We use Loom [26], a well established knowledge representation and reasoning
system, for modeling and managing semantic domain knowledge. Loom uses
description logics as its main inference engine. The choice of loom, was sug-
gested by practical considerations: mainly because it is a well supported open
source project. In fact, the work described in this article can be implemented
using other DL-based knowledge representation and reasoning systems. Loom
provides a definition language to write definitions of concepts and relations,
and an assertion language to assert facts about individual objects. Loom sup-
ports a first order query language to retrieve instances from a knowledge base.
It is also possible to ask the knowledge base whether or not a proposition is
true according to the conceptual definitions. Loom uses open world semantics
as the default assumption when trying to prove or disprove a proposition. This
makes it possible to conclude whether the truth value of a proposition is true,
false, or simply unknown.

Concepts are used to specify the existence of classes of objects such as “there
is a class of rooms” or “a bedroom is a room with at least one bed”:

(defconcept room)
(defconcept bedroom :is (:and room (at-least 1 has-bed)))

The term has-bed in the second definition specifies a relation between objects
of class bedroom and objects of class bed. This relation is defined as follows:

(defrelation has-bed :domain bedroom :range bed)

The construct (at-least 1 has-bed) specifies a constraint over the number
of beds that can be in a bedroom. It is also possible to specify constraints
over the types of objects an object can be in relation with. More complex
concept expressions are constructed by combining other concept names using
a limited number of connectives (and, or, not, implies). Concepts that are
not defined in terms of other concepts are called atomic concepts (see the
appendix for examples of more complex definitions of concepts).

Once the general semantic knowledge is constructed, specific instances of
classes can be asserted to exist in the real world. For example:

(tell (bedroom r1)(has-bed r1 b1))

asserts that r1 is an instance of bedroom and results in classifying b1 as a
bed (because the range of the relation has-bed is of type bed). The instance
r1 is also classified automatically as an instance of the class room. Classi-

6

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

SKEMon(obj)

1. CLs←− skb::get-asserted-classes(obj)

2. temp←− perception::perceived-object

3. Π←− perception::perceived-properties&relations(temp)

4. skb::create-instance (temp,Π)

5. if ∀ cl ∈ Cls. skb::is-instance-of(temp, cl) then success

6. else if ∃ cl ∈ Cls. skb::is-not-instance-of(temp, cl) then failure

7. else unknown outcome

End

Fig. 2. The pseudo code of the semantic knowledge-based execution monitoring
process SKEMon.

fication is performed based on the definitions of concepts and relations to
create a domain-specific taxonomy The taxonomy is structured according to
the superclass/subclass relationships that exist between entities. When new
instances are asserted (added to the knowledge base), they are classified into
that taxonomy.

3.2 The Monitoring Process

A process for Semantic Knowledge-based Execution Monitoring which we call
SKEMon is outlined in figure 2. The process typically checks if an execution-
time object fits the description of an expected object. For instance, if the
action to execute is (pick-up c1) to pick up object c1 (the expected object),
then the object actually picked up by the robot is the execution-time object;
and thus needs to be checked to verify if it matches the description of c1.
The execution of the navigation action (enter r1) implies that the execution-
time object is the room where the robot ended up, which needs to be checked
against the description of r1 (the expected object). In figure 2, the operations
prefixed by “skb::” involve using the semantic knowledge base, whereas those
prefixed by “perception::” involve the perception module (see figure 1).

The process gets the name of the expected object obj which is derived from the
action model; in our current implementation obj is derived from the positive
effects of the executed action. The process starts by querying Loom (the SKB)
about the asserted classes of the expected object obj (step 1). Only the most
specific asserted classes are considered, since the semantic knowledge base can
deduce that an instance of a specific class is also an instance of all the more
general classes. For instance, if r1 is asserted once to be a room and once to

7

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

be a living-room, then only the living-room class is considered.

In step 2, the perception module is asked to return the execution-time object
which is given a temporary name by the SKEMon process. Then, the per-
ception module is queried about the perceived properties and relations (to
the other perceived objects) of the execution-time object (step 3). It should
be noted that in our current implementation, the perception module retains
only percepts that are relevant to the current domain by filtering the stream
of percepts coming from the vision system. The filtering is carried out by
hard-coded functions that are defined as part of each domain. An alternative
solution would be to automatically construct filters using the definitions of
concepts and relations which are stored in the semantic knowledge base.

In step 4, the perceptual information about the execution-time object is used
to create a temporary instance in SKB. For instance, if the perception module
answers that the robot is in a room and that one chair ch1 and one bed b1

have been observed in that room, then the monitoring process asserts those
facts in the SKB by issuing the following Loom command:

(tell (room temp)(has-chair temp ch1)(has-bed temp b1))

where temp is a temporary symbol used to refer to the current room (where
the robot is actually located), i.e., the execution-time object. Loom classifies
the newly created instance based on the properties and relations to the other
perceived objects, i.e., the chair ch1 and the bed b1. Once Loom is done with
the classification of the execution-time object, the monitoring process sends
another query to Loom to check whether the classification is consistent with
the asserted classes of the expected object obj (step 5). In step 6, the monitor-
ing process checks whether the available perceptual information reveals that
one of the constraints, involved in the definition of the classes of the expected
object, is violated. For our example, this is performed by sending the following
two queries to Loom where the second query is asked only when the answer
to the first one is “NO”.:

(ask (Living-room temp))
(ask (:not (Living-room temp)))

The monitoring process interprets Loom’s answers as follows:

• Consistent Classification. A YES on the first query means that the im-
plicit expectations are verified and the execution-time object is classified
like obj. Therefore, the SKEMon process reports success (step 5). In our
example, this means that the robot is in the right type of room.
• Inconsistent Classification. A YES on the second query means that the

8

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

m < n m = n m > n

(:at-least n R) unknown YES YES

(:exactly n R) unknown unknown NO

(:at-most n R) unknown unknown NO
Table 1
Truth values of number constraints given in function of m: the number of objects
that have been observed to be related by relation R to a specific individual.

classification of the execution-time object is inconsistent with the expected
object obj. Hence, failure is reported (step 6). In our example, this means
that the robot is dislocated.
• Unknown Outcome. NO on both queries means that it cannot be deter-

mined whether some constraints (implicit expectations) hold or not (step
7). In our example, if no sofa is observed and the constraint (at-least 1

has-sofa) is not known to be true or false for the current room, then the
room cannot be classified as a living-room by loom.

The unknown outcome is due to the fact that we set up Loom to operate
according to open world semantics. In other words, the facts told to Loom
are assumed to be only a part of the complete world state. As a result, Loom
assumes that there might be additional facts of which it has not been told. The
reason behind using open world semantics is to be able to take into account
partial observability of the environment: due to occlusions, the robot gets only
partial information about the presence of objects and their properties. Using
open world semantics makes number constraints prone to give an unknown.
An (at-least n R) constraint gives unknown whenever the total number of
observed objects related to the constraint is less than the lower bound n. The
constraint gives YES otherwise. An (at-most n R) constraint gives unknown
as long as the total number of observed objects related to the constraint is not
above the upper bound n. The constraint gives NO otherwise. Table 1 shows
the answers to queries about the truth value of three number constraints given
as a function of the total number m of observed objects.

There are two options to handle the unknown outcome. The first option is
to be credulous and consider the absence of counter-evidence as sufficient
grounds for assuming that the execution of the action has succeeded. In our
example, this implies that the monitoring process should ask the semantic
knowledge base whether the location is an instance of another class (that is
not a superclass of the expected class) to check whether the robot is dislocated.
If the class of the location is still not known, the monitoring process assumes
that the location is correct as long as no evidence of the contrary is detected.
The second option is to take a cautious approach and actively try to gather
more information in order to do a better classification. The reader is referred
to [27] for more information on how sensor-based planning can be used to

9

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

collect information for the purpose of monitoring using semantic knowledge.

3.3 Dealing with Unexpected Situations

Whenever the monitoring module finds out that an action has not been ex-
ecuted successfully, a recovery procedure can be launched to correct the un-
expected situation. The recovery procedure consists in finding a sequence of
actions that would lead to a situation where the robot can continue executing
its top-level task plan. In our navigation example, replanning is needed when
the robot is found to be dislocated. The first step in replanning is the creation
of a world state that reflects the resulting unexpected situation, i.e., update
the location of the robot to the right one. However, special care should be
taken when performing location update, because sometimes the new location
might be not unique. For instance, if all what the robot has observed so far is
a sink and sinks are defined to be either in a kitchen or a bathroom, then the
recovery module should take this fact into account.

4 Handling Uncertainty

The SKEMon process presented in the previous section is limited to action
models with deterministic effects. The process has also the limitation of treat-
ing expectations in a boolean fashion, i.e., evaluated to be either true, false, or
unknown. These limitations are mainly due to the fact that the process does
not represent uncertainty inherent in action effects, world states, and sensing.
In this section, we describe a different execution-monitoring process that is
able to reason about uncertainty. To this end, we develop a model that takes
into account quantitative uncertainty in the form of probabilities in states,
actions, sensing and the way semantic knowledge is used to interpret expec-
tations. More specifically, action models can encode different outcomes each
with a given probability of occurrence, and sensing can be noisy. As a result of
using probabilities, it is possible to go beyond a boolean treatment of whether
an expectation is verified. In other words, the monitoring process can compute
a probability for whether a certain expectation is verified, such as “the robot
is in the kitchen with 0.85 probability” instead of returning “unknown” as a
monitoring result. Moreover, the fact that the a posteriori probability of each
outcome of an action can be estimated enables a more informed decision about
how to proceed (consider action execution successful, failed, or more informa-
tion needed) than with just a boolean approach. Typically, the probabilistic
monitoring process works as follows:

• For each possible outcome of the action whose execution is being monitored,

10

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

a set of implicit expectations are determined.
• Those expectations are used to estimate a probability distribution over ac-

tual world state. For instance, the implicit expectation of seeing at least
one desk implies that the probability of having no desk is zero, while the
probability of having one, two, or more desks is strictly greater than zero.
Although reasoning under uncertainty in description logics is an ongoing
research activity [40], currently there is no available DL system that sup-
ports probabilities. Thus, the probability distributions of the expected state
of the world are computed by a precoded procedure.

Besides uncertainty about the world state, uncertainty in sensing is taken into
account by a model that expresses the probability of what is observed for a
given world state. In its general form, the sensing model permits:

• To state whether an object that exists in the real world is seen or not, e.g.,
to take occlusions into account.
• How a seen object is classified, i.e., the model accounts for misclassifica-

tion of objects when they are seen. For instance, a sofa may sometimes be
mistaken to be an arm-chair.

The monitoring process uses the prior probability distribution, over the out-
comes of the executed action, together with the semantic knowledge-based
probability estimates and the sensing model to compute the posterior proba-
bility of the outcomes. Thus, the monitoring task becomes more like a Bayesian
belief update task [28]. More specifically, If o denotes the collected observa-
tions, then the posterior probability of the action resulting in a specific out-
come r is computed using Bayes formula:

p(r|o) =
p(o|r)p(r)

p(o)
(1)

where p(o) is a normalizing factor. To compute the posterior p(r|o), two proba-
bility functions are needed: (1) the prior probability p(r) which is derived from
the action model, and (2) the observation function p(o|r). In the following we
show how the latter is computed. We adopt the following notation: bold-face
letters denote vectors such that the ith element of a vector X is denoted by Xi.
Capitalized letters denote variables, while uncapitalized letters denote specific
values, e.g., o is the same as O = o and x is the same as X = x.

We restrict ourselves to constraints over atomic classes of observable objects.
One could easily add constraints over values of other attributes, e.g., color
∈ { red, yellow, white}. In our model we use the following entities:

• R: a random variable denoting the different outcomes of the executed action.
• O: a random vector such that its ith random variable Oi represents the

11

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

number of observed objects of type Ci. For instance, if C1 refers to the
concept bed, O1 represents the number of observed beds.
• S: a random vector such that its ith component is a state variable whose

values are the actual number of objects of type Ci. Each state variable Si

takes values in a finite domain Vi ⊂ N. In our model, each Si depends
directly only on R. The size N of O and S is the number of the observable
atomic concepts Ci.

Consequently, equation (1) becomes:

p(r|o) =
∑
s

p(r, s|o) = α
∑
s

p(o|s)p(s|r)p(r) (2)

where s ranges over values belonging to V1 × V2 × · · · × VN and α = 1/p(o)
is a normalizing factor. To compute p(o|r), two probability mass functions
are required: (1) a sensing function p(o|s) that describes the probability of
observing o when the real world state is described by s, and (2) a state function
p(s|r) that describes the probability of s when the outcome of the action is r.

Example. Consider the execution of the navigation action (move loc1 loc2)

whose model accounts for two possible outcomes. The first outcome, i.e., R =
1, is when the robot remains unintentionally in loc1, while the second outcome,
i.e., R = 2, is when the robot moves effectively to loc2. If the only classes of
observable objects that can exist in either location are beds and sinks, then
S1 and S2 denote respectively the actual number of beds and sinks that exist
in one of loc1 or loc2. O1 and O2 denote respectively the number of observed
beds and sinks in the current location.

4.1 The Sensing Model p(o|s)

The function p(o|s) specifies the probability that the robot will observe o1

objects of class C1, o2 objects of class C2, · · ·, given that the actual values of
the state variables are equal to s. In its general form p(o|s) permits to specify
if an object is seen or not, and how a seen object is classified, i.e., the model
accounts for misclassification of objects when they are seen.

The potential for misclassifying objects when they are seen implies that all
random variables in O and S depend on each other. As a result, there is an
exponential number of probabilities P (O = o|S = s) that require to be spec-
ified. We break this dependency by introducing N random vectors Gi:1≤i≤N

(each of dimension N + 1). Each Gi depends directly only on the ith state
variable Si and p(gi|si) expresses the probability of classifying si objects of
type Ci as gik(k = 1 . . . N) objects of class Ck. The number of missed (unseen)
objects of type Ci is denoted by gi(N+1).

12

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

R

S1 SN

G1=(G11,…,G1N,G1N+1)

 … … … GN=(GN1,…,GNN,GNN+1)

O1

 … … … …

ON … … … …

Fig. 3. The dependency structure of the different random variables used in the state
and sensing functions.

Under the assumption of independent classification of objects of the same class,
p(gi|si) can be expressed by a multinomial probability mass function. The
parameters n and pk(1≤k≤N+1) of the multinomial are defined as n = si and pk is
the probability of classifying an object of class Ci as of class Ck (for k ≤ N +1)
while pN+1 is the probability of missing (not seeing) an object of class Ci.
Figure 3 shows the dependency structure of R,S, O, and Gi. Note that oi

represents the total number of objects classified as Ci; either correctly or
incorrectly (e.g., the number of observed chairs is the total number of objects
classified correctly or incorrectly as chairs), thus we have p(oi|g1i, . . . , gNi) = 1
when

∑
k=1,N gki = oi. Finally, the sensing model is formulated as:

p(o|s) =
∑

g1,...,gN

p(o,g1, . . . ,gN|s)

=
∑

g1,...,gN

N∏
i=1

p(oi|g1i, . . . , gNi)p(gi|si) (3)

4.2 Deriving the state function p(s|r)

The state function is where semantic knowledge is encoded. This function
gives, for instance, the probability that the grasped object has a handle given
that it is a cup, or the probability that a room has a stove given that it is
a kitchen. Unfortunately there is no workable description logic system which
supports probabilistic reasoning (although some attempts have been made in
that direction [29]). Therefore, we were obliged to implement the probabilities
of the state functions outside the semantic knowledge base.

As we consider that each state variable Sj is dependent only on the outcome
R, the state function p(s|r) becomes

p(s|r) =
N∏

j=1

p(sj|r) (4)

13

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Each p(sj|r) specifies the probability of having exactly sj instances of class
Cj given that the outcome of the action is known to be r. To compute
p(sj|r), we use semantic knowledge to detrmine the implicit expectations
Er = {e1, . . . , enr} implied by the outcome r. Each expectation expresses a
number constraint over the values of the actual number of objects of a certain
class Cj, i.e., ej ≡ (Sj ∈ Vj) where Vj ⊆ N. The implicit expectations are then
used to compute p(sj|r) as follows:

• For expectations constraining the values of a state variable Sj, i.e., ej ≡
(Sj ∈ Vj), we should have: 0 < p(sj|r) ≤ 1 if sj ∈ Vj otherwise p(sj|r) = 0;
we also should have

∑
sj∈Vj

p(sj |r) = 1.
The probability mass function p(sj|r) can be chosen to be a known func-
tion used in counting processes such as the binomial or the Poisson mass
functions. It can also be given as a table of probabilities reflecting the belief
of the user. Using a known probability mass function reduces considerably
the amount of information that the user has to provide, since only a few
parameters need to be specified.
• For state variables Sj that are unconstrained in r, we simply assume that

p(sj|r) is a uniform probability mass function.

Example. Continuing our example of (move loc1 loc2), the implicit ex-
pectations of being in loc1 are determined based on the type of loc1. If
loc1 is asserted to be a bedroom and bedrooms are defined as rooms hav-
ing at least one bed and no sink, then the implicit expectations could be
E1 = {e1 ≡ (S1 ∈ {1, 2, 3}), e2 ≡ (S2 ∈ {0})}. The conditional probabilities of
the state variables given that the robot is in a bedroom might be determined
as follows: the number of beds, i.e., S1 in a bedroom can be modeled as a
shifted geometric function, i.e., P (S1 = i|r) = λ(1 − λ)i−1 if i ≥ 1, where
λ is the probability of having exactly one bed in a bedroom. The implicit
expectation e2 implies that P (S2 = 0|R = 1) = 1.0.

5 Experiments

We have implemented the two monitoring processes on a real robot and ran
tests in real world to demonstrate the feasibility of the approach. We also
conducted experiments in simulation to collect large amounts of data for the
purpose of statistically evaluating the performance of the proposed framework.
Due to lack of benchmark systems in execution monitoring of symbolic plans,
we base our evaluation on the metrics of false positive rate (FPR, the ratio
between the number of false positives and the total number of actual negative
cases) and true positive rate (TPR, the ratio between the number of true
positives and the total number of actual positive cases).

14

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

r3

r1 r2

r4

living-room

bedroom bedroom

kitchen

Fig. 4. Experimental setup. (Left) Pippi, the Magellan Pro robot together with
simple objects used to represent furniture items. (Right) Map of the environment
used in performing test cases.

5.1 Real Robot Test Scenarios

In order to test the SKEMon process, we implemented both versions, i.e., crisp
SKEMon and probabilistic SKEMon, on a Magellan Pro mobile robot, called
Pippi, (figure 4) running a fuzzy behavior control architecture for navigation
purposes [30]. The robot is equipped with 16 sonars, and a color CCD pan-
tilt camera used by the vision system to recognize and classify objects. Since
our main objective is to show the capacity of execution monitoring using
semantic knowledge and not object recognition, we use a simple vision system
that is able to recognize objects with simple shapes using color segmentation.
It should be noted that our approaches do not depend on the simple vision
system we used. One can use more robust object recognition and classification
systems such as the system described in [31] that uses scale and orientation
invariant local descriptors (SIFT features) [32] to identify objects occurring in
typical household environments.

Our test scenarios consisted only in performing navigation tasks in a house
environment (see figure 4) where we let simple shapes like cylinders and boxes
stand in for beds, sofas, etc. The test runs reported below have been performed
in a lab environment, placing the simple objects to simulate pieces of furniture.
The semantic knowledge base is given in appendix A.

5.1.1 Crisp SKEMon Test Cases

We start by describing test cases where crisp SKEMon using a credulous ap-
proach was used to check the implicit expectations of navigation actions. Pippi
was assigned tasks to clean the different rooms in the house. Plans for achiev-
ing those tasks were all generated under the assumption that the actions would
be reliably executed and that there was no sensing noise. In the following, we
describe test cases of monitoring instances of the (enter ?loc) action.

15

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Correct Success Result 1. In this test case, Pippi finished the execution
of (enter r4) and could see only an oven from its final place. After asserting
the fact that the current room has one oven and since ovens are defined to be
exclusively in kitchens, Loom classified the current room as an instance a the
class kitchen. As a result, the SKEMon process returned success (step 5 of
the process) without even having to consider a credulous approach. This test
case shows that not all the implicit expectations need to be verified in order
to conclude that an action has been successfully executed. It was enough to
see objects that are characteristic of a certain class of rooms to deduce the
class of the room where the robot was.

Correct Success Result 2. The aim of this test case is to show that the
monitoring process uses the absence of counter evidence to correctly conclude
that an action is executed successfully, although some implicit expectations
are not known to hold or not. Here, Pippi started in r4 and executed the action
(enter r3) to enter the living-room r3. Pippi could perceive one sofa from her
final position. That did not help Loom to know whether the current room was
an instance of the class living-room, i.e., SKEMon reached an unknown result
(step 7 of the process shown in figure 2). Nevertheless, Pippi was concluded to
be in r3, since the SKEMon process was using a credulous approach. Notice
that the unknown result was returned because sofas were not defined to be
exclusively constrained to be in living-rooms.

False Success Result. This test case shows that the credulous approach
might cause the monitoring process to wrongly conclude that the execution
of an action has succeeded. Here, Pippi finished the execution of the action
(enter r1) but instead of entering bedroom r1 she ended up in the kitchen
where she could see only a table. As tables could be in either room, the SKE-
Mon result was unknown. Using the credulous approach suggested that Pippi
was in r1 which was a false positive.

Correct Failure Result. The aim of this test case is to show that it is enough
that one implicit expectation is violated to conclude that the execution of the
action has failed. We repeated the previous test case, but instead of seeing a
table, Pippi saw a sink. This meant that the SKEMon process could conclude
that the execution of the action has failed, since the implicit expectation of
having no sink in a bedroom was violated.

5.1.2 Probabilistic SKEMon Test Cases

We also run test cases where uncertainty in action effects and sensing were
reasoned about by the probabilistic version of SKEMon. The parameters used
in the sensing model and the state functions are given in appendix B. We
considered monitoring the execution of the action (move ?loc1 ?loc2) with a

16

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

model of a prior giving 20% chance for the robot being stuck in room ?loc1

(outcome 1, denoted R = 1) and 80% chance for the robot ending up in room
?loc2 (outcome 2, denoted R = 2). Thus, the SKEMon process returned the
outcome that had the highest posterior probability.

Negative Evidence Against One Outcome. In this test case we show how
acquiring negative evidence changes the prior probability of the outcomes.
Here, Pippi started in room r3 and executed the action (move r3 r4) to move
to room r4. Pippi effectively moved into r4 and could perceive only one sink
from its final place. The computed posterior was P (R = 1) = 0.0 and P (R =
2) = 1.0. This result was supported by the fact that room r3 was a living-room
and according to the semantic knowledge it should contain no sink. Moreover,
in the sensing model, the only object that could be mistaken as a sink was
an oven which should not be found in a living-room either. Therefore seeing
a sink was negative evidence against the first outcome.

Uncertain Posterior. We considered two test cases where perceptual infor-
mation did not eliminate the uncertainty about action outcomes. Both test
cases involved monitoring the execution of the same action (move r3 r1),
where Pippi started from the same location in room r3 and effectively moved
into room r1. In the first test case, Pippi could see 2 chairs from its final place.
As chairs could be in both rooms, the probabilistic SKEMon process reached
the posterior P (R = 1) = 0.13 and P (R = 2) = 0.87. This was a predictable
result as the conditional probability of seeing chairs in both rooms was the
same. In the second case, Pippi could see only a sofa. The computed posterior
was P (R = 1) = 0.4 and P (R = 2) = 0.6. This result was due to the fact that
in the sensing model, seeing a sofa was interpreted as either a sofa or a bed,
with different probabilities of course.

5.2 Simulation Results

We used the 3D robot software simulator “Gazebo” [33] to run our simulation
experiments. We collected data of monitoring the execution of manipulation
and navigation actions inside a house environment. A mobile robot called
Astrid, of type ActiveMedia PeopleBot, was used in both scenarios as the
main protagonist (fig. 5). The robot is equipped with a color camera that was
used to acquire visual perceptual information about the environment.

5.2.1 Manipulation Scenario

In the first scenario, we used a simulation of the smart house described in
[34]. Besides the robot, the experimental set-up includes a two prismatic-joint
arm that is attached to the roof of a fridge (see figure 5). The arm is used

17

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Fig. 5. Simulation experimental setup. (Left) Astrid the robot and the fridge. (Right)
A close up of the arm while picking up an object inside the fridge.

for picking up objects inside the fridge and place them on the base of the
robot so they can be carried to another location inside the house. All objects
belong to subclasses of a general class container, and each subclass had some
specific properties in terms of constraints over relations to other primitive
objects (handle, cap, and cover). The semantic definitions of such classes are
relatively simple, and they are given in appendix A.

We used the two simple solids of a cylinder and a box to represent a container,
while the related objects (i.e., handle, cover, cap) were represented by marks of
different colors placed on the primary objects. For example, an object of type
cup was represented by a box (container) that had a yellow mark (handle).

5.2.2 Navigation Scenario

In this scenario, Astrid is acting in a house environment that comprises rooms
of different types (bedroom, living-room, kitchen, bathroom, utility room, and
office). In each room there are furniture items that are typical of the type of
that room. For instance, in a kitchen, there’s at least one oven, at least one
sink, etc. In total, there are thirteen different types of objects that can exist in
a room. The semantic definitions of the different types of rooms and furniture
items is given in appendix A. The semantic knowledge used in this scenario
is more complex than in the previous scenario. The definitions contain more
constraints, and there are more related objects to take into account in order
to classify a room. Moreover, there are certain types of objects that, when
observed, do not contribute to the classification process, like plants. As in
the manipulation scenario, the furniture items were represented by objects of
simple shapes and colors.

5.2.3 Perceiving the Environment

We vary the degree of partial observability of the environment using a param-
eter Pperc that specifies the probability of perceiving all objects related to the

18

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

actual outcome of an executed action. In our experiments, we assume that all

the objects have the same probability of being perceived, i.e., m

√
Pperc, where

m is the total number of objects that are related to the actual outcome of the
action. We also assume that these probabilities are independent.

5.2.4 Crisp SKEMon

We tested the performance of the crisp SKEMon process on both scenarios.
For the manipulation scenario, each experiment consisted of executing the
high-level action “(pick-up obj)” by the arm to pick up the object “obj”
that was inside the fridge. The high-level definition of the pick-up action is
given as follows:

(ptl-action :name (pick-up ?obj)

prec: (and (arm-empty)(inside-fridge ?obj))

results: (and (arm-empty = f)(holding = ?obj)))

The SKEMon process was called once the low-level execution process reported
that it succeeded in picking up the desired object. The camera on-board the
robot was used for acquiring perceptual information about the picked up ob-
ject. That meant the robot had to be in front of the fridge facing one side of
the picked up object. Thus, the related object (handle, cap, or cover) could
be observed only if it was on the side facing the robot.

The “(pick-up obj)” experiment was run such that obj was asserted 100
times to be one of each of the five types: cup, bowl, bottle, glass, and box,
giving a total of 500 runs. In each run the type of the object that was actu-
ally picked up was uniformly sampled from the five available types. Whether
the related object (e.g., handle, cap,...) was visible was decided by using a
Bernoulli distribution with success probability Pperc.

Similarly, we conducted a total of 600 runs of the (enter loc) navigation
action to enter a room identified by the symbol loc and whose type was
asserted to be one of the available room types, i.e., bedroom, living-room,
etc. Each room type was considered 100 times. Each time, the type of the
actual final location of the robot was sampled uniformly from the six available
types. A world state, containing objects that were consistent with the actual
location, was then generated using the state functions used in the probabilistic
version of SKEMon (see appendix B). The objects that could be perceived
from the robot’s position were determined according to the Pperc parameter.
The perceivable objects were then put in places where the robot could see
them while the others were hidden. Object detection was tuned so that all
perceivable objects were actually detected and correctly classified.

Table 2 shows the obtained results for three different values of Pperc: 0.3, 0.5,
and 0.7. We remark that the monitor is able to detect most of the failure situ-

19

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Table 2
Results of performing crisp SKEMon to monitor the two actions:pick-up and enter.
The rows show the ground truth (Success or Failure) while the columns show the
result returned by SKEMon (Success, Failure, or Unknown).

Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

S F U S F U S F U

Navigation
S 20 0 70 22 0 71 27 0 58

F 0 412 98 0 418 89 0 437 78

Manipulation
S 9 0 101 22 0 87 22 0 81

F 0 75 315 0 128 263 0 163 234

ations (true negatives) for the navigation actions (80, 82, and 85 %). However,
for the pick-up actions, smaller percentages are detected (19, 33, and 41%).
The high percentages of the navigation scenario are explained by the fact that
most concept definitions are highly constrained, and therefore, the perception
of objects as counter evidence is more likely which reduces the number of
cases where the monitor declares unknown. The definitions of concepts in the
manipulation domain involve only a small number of constrains over related
objects, so the probability of observing counter evidence is lower. Moreover,
as the concept definitions of bowl and glass are the same, all the situations
where the expected outcome is picking up a bowl, but the actually picked up
object is a glass (and vice versa) are declared as unknown.

The results show also that the number of correctly detected successful execu-
tion cases is low. Figure 6 shows the rates of true positives (TPR) and true
negatives (TNR) for the different types of the expected object. One can ob-
serve that all detected success cases for the navigation actions are from runs
where the robot successfully moved into either the kitchen or the utility-room.
On the other hand, the detected success cases for the manipulation actions are
from runs where the expected object to pick up was a cup or a bottle. This is
due to the fact that the robot could see objects that were defined to be exclu-
sively related to those types of rooms and containers. For instance, seeing an
oven was sufficient to conclude that the current room was a kitchen, while see-
ing a handle on the picked up container caused that container to be classified
as a cup (see the definitions of relations in appendix A). On the other hand,
we can observe that the percentage of correctly detected failures is never zero.
This brings us to the conclusion that if the SKB contains constraints that
uniquely identify classes of objects, crisp SKEMon would be able to detect
more successful execution cases, and thus a lower number of unknown cases.

When the monitoring process takes a credulous approach, all unknown results
are counted as success. Table 3 shows the rates of true positives (TPR) and
false positives (FPR) of crisp SKEMon using the two approaches: credulous
and non-credulous, i.e., treating unknown as a separate case. One can note that
the credulous approach detects 100% of successful execution cases; but at the
same time it reports higher rates of false positives, especially when applied in

20

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Table 3
The TPR and FPR results, given as percentages, of crisp SKEMon for the two
scenarios when treating unknown as a separate third case, i.e., non-credulous (N-
C), and when unknown is considered success, i.e., credulous approach (C).

Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

Approach FPR TPR FPR TPR FPR TPR

Navigation
N-C 0 22.22 0 23.65 0 31.67

C 19.21 100 17.55 100 15.14 100

Manipulation
N-C 0 8.18 0 20.18 0 21.35

C 80.76 100 67.26 100 58.94 100

bedroom living−room kitchen bathroom office u−room
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TPR
TNR

bottle bowl box cup glass
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TPR
TNR

Fig. 6. Rates of true positives (TPR) and true negatives (TNR) achieved by crisp
SKEMon for different types of rooms (left) and containers (right).

the manipulation domain. It should also be noted that all the results of crisp
SKEMon, both credulous and non-credulous, indicate a good performance
(even for low values of Pperc). The reason is that when the FPR vs TPR points
are plotted in the ROC space, they are all above the line of no-discrimination
(i.e., the line representing the function f(x) = x). This result is due to the fact
that crisp SKEMon, with a non-credulous approach, achieves 100% specificity
(which is equivalent to 0% of false positives) and a sensitivity (equivalent to
TPR) that is greater than zero. On the other hand, using a credulous approach
gives 100% of true positives and a FPR that is less than TPR. Therefore, one
can conclude that crisp SKEMon is good at detecting when the execution of
actions fail, provided that the defined concepts be sufficiently constrained, but
is less good in detecting correct execution.

5.2.5 Probabilistic SKEMon

We used the same experimental set-up to evaluate the performance of the
probabilistic SKEMon. However, this time, we considered action models for
SKEMon with two possible outcomes each with a given probability of occur-
rence. For the pick-up action, the first outcome expressed the possibility of
picking up the desired object while the second outcome expressed the pos-
sibility of picking up another object that was near the desired one. For the
navigation scenario, we considered the action (move loc1 loc2) to move the
robot from its initial room loc1 to room loc2. The first outcome of the action

21

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Table 4
Results of performance of probabilistic SKEMon in monitoring the execution of
navigation and manipulation actions. The rows show which outcome of the action
actually occurred while columns show the result returned by the SKEMon process.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

O1 O2 O1 O2 O1 O2 O1 O2

Navigation
O1 2337 372 2434 302 2402 302 2446 283

O2 194 2497 166 2498 144 2552 137 2534

Manipulation
O1 991 832 1100 774 1245 652 1348 554

O2 551 1376 477 1399 376 1477 340 1508

reflected the situation where the robot would remain unintentionally in loc1,
while the second outcome expressed the case where the robot would effec-
tively end up in room loc2. SKEMon was also provided with a sensing model
specifying the probabilities for not observing or misclassifying an object.

To simulate the unreliable effects of executing an action, we used the prior
probability of the two outcomes, as specified in the action models, to sample
the actual object or location. Then, the sampled object was placed in a location
where the arm would pick it up, or the robot was placed at the entrance of the
sampled room. The process of determining which objects were perceivable by
the robot was done the same way as in the crisp SKEMon experiments. The
acquired perceptual information was corrupted according to the parameters
of the sensing model, leading to misclassification.

Probabilistic SKEMon was evaluated using four values of Pperc: 0.1, 0.3, 0.5,
and 0.7. For each value of Pperc, three prior probability distributions of the
two action outcomes were considered: (0.8, 0.2), (0.5, 0.5), and (0.2, 0.8). We
ran experiments where the two objects (involved by the two action outcomes)
could be asserted to be of any of the available types. For each combination of
types, we repeated the experiment 50 times. This resulted in a total of 3750
runs for the manipulation action and 5400 runs for the navigation action. Table
4 summarizes the results of probabilistic SKEMon on both types of actions,
i.e., manipulation and navigation. The rows represent the ground truth while
the columns show the results of the SKEMon process which were computed by
selecting the outcome with the higher posterior probability. O1, respectively
O2, refer to outcome 1, respectively outcome 2, of the executed action. The
true positive rate (TPR) and the false positive rate (FPR) for probabilistic
SKEMon were computed by considering outcome 2, i.e., O2 as the positive
case. Table 5 shows TPR vs FPR for both types of actions.

The results indicate good performance as TPR tends to be high and FPR tends
to be low. As in the case of crisp SKEMon, we notice that the performance
gets better when the probability Pperc is higher. Similarly, we notice that
the performance on the navigation scenario is much better than the one on
the manipulation scenario. As explained above, this is due to the number of

22

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Table 5
The rates of true positives (TPR) and false positives (FPR), given as percentages,
of probabilistic SKEMon for navigation and manipulation actions.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

FPR TPR FPR TPR FPR TPR FPR TPR

Navigation 13.73 92.79 11.03 93.76 11.16 94.65 10.37 94.87

Manipulation 45.63 71.40 41.30 74.57 34.37 79.70 29.12 81.60

constraints and how much of the environment is observable, i.e., Pperc. We
also ran experiments where the action model used by probabilistic SKEMon
was corrupted, i.e., the probabilities of the outcomes were not always correct.
The obtained results were comparable to those obtained with a reliable action
model. These results are reported in the PhD thesis of Bouguerra [35].

6 Discussion and Conclusions

In this paper, we have described a new approach of monitoring the execution
of robot plans where semantic knowledge is used to derive and verify implicit
expectations of executing plans successfully. We have developed two processes
based on this idea. The first process is adequate for domains with deterministic
actions and reliable sensing, while the second process was designed to handle
domain uncertainty in its different forms, i.e., stochastic action effects, noisy
sensing, and incomplete information about world states.

The experimental results show that semantic domain knowledge can effectively
help robots achieve good performance of monitoring the execution of their
plans. In particular, we have shown that crisp SKEMon is very good at de-
tecting execution failures, especially when the knowledge base includes enough
counter-evidence constraints. On the down side, crisp SKEMon is unable to
detect failure situations when the expected object has similar conceptual de-
scription as the execution-time object or when the expected object and the
execution-time object are both instances of the same class. Although, we did
not notice any performance issues regarding the size of the knowledge bases
we used in our experiments, we expect that with the use of the state-of-the-
art knowledge representation systems, our approach would be able to handle
much bigger and more complex knowledge bases. Our claim is supported by
the developments of DL-based systems that are shown to scale up well [36,37].

When uncertainty is taken into account, the performance is even better than
the one achieved by crisp SKEMon. This claim is supported by the TPR and
FPR results of monitoring the execution of two different types of actions.
The reason for the better performance can be attributed to the fact that
expectations are no longer treated in a boolean manner, i.e., satisfied, violated,
or unknown. Furthermore, decisions about whether the execution of an action

23

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

has failed or succeeded are based on how likely each expectation is verified or
violated given the acquired perceptual information.

The use of probabilities to model uncertainty in sensing and acting gives us a
well founded treatment, but providing the needed probability values might be
a daunting task for large domains. In our implementation, we took a Bayesian
approach and interpreted probability values as measures of belief. Therefore,
the user can model probability state functions using known probability mass
functions such as the shifted geometric and Poisson distribution. Using a
known probability mass function reduces considerably the amount of infor-
mation that the user has to provide, since only a few parameters need to be
specified. We also simplified the task of providing conditional probabilities for
the sensing model by making assumptions that allows us to use well known
probability mass functions. The sensing model is relatively complex, and it
may be hard to compute for domains with a large number of object types. We
have proposed elsewhere a simplified model that assumes no misclassification
[6]. Alternatively, one may use approximate inference methods to address the
computational complexity of the sensing model: this last point is the subject
of our current work. Another point that is worth investigating further is to
study how the available semantic knowledge can be used by the perception
process in order to focus its attention only on those percepts that are relevant
to the task at hand.

While we have evaluated the performance of our approaches in monitoring the
execution of simple actions using a simple vision system. We expect that our
approaches, especially the probabilistic one, would perform very well in more
realistic scenarios when more powerful perception systems are used. This is so,
because the probabilistic approach uses a sensing model that is able to reason
about noisy sensing where objects can be missed or misclassified when they
are detected.

Although, several of the examples and experiments involved the robot’s lo-
cation, the problem addressed by our work should not be confused with self-
localization. Our focus is on monitoring the execution of actions by observing
their (explicit and implicit) effects: these effects may include the robot’s lo-
cation in the case of navigation actions, but they include other aspects of the
world state for other actions, like grasping actions. However, we would like
to point out that the output of self-localization can be taken into account
when computing the prior probabilities of the outcomes of the action to exe-
cute. Therefore, our approach would greatly benefit from using the output of
probabilistic localization systems, such as particle-filter ones [38].

24

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

Acknowledgements

This work was supported by the Swedish KK foundation. We would like to
thank the reviewers for their informative and helpful feedback.

References

[1] R. Fikes, P. Hart, and N. Nilsson. Learning and executing generalized robot
plans. Artificial Intelligence, 3(4):251–288, 1972.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture
for autonomy. Int. J. of Robotics Research, 17(4):315–337, 1998.

[3] M. Beetz. Plan-Based Control of Robotic Agents. Number 2554 in Lecture
Notes in AI. Springer-Verlag, 2002.

[4] O. Pettersson. Execution monitoring in robotics: A survey. Robotics and
Autonomous Systems, 53(2):73–88, 2005.

[5] A. Bouguerra, L. Karlsson, and A. Saffiotti. Semantic knowledge-based
execution monitoring for mobile robots. In IEEE Int. Conf. on Robotics and
Automation, pages 3693–3698, 2007.

[6] A. Bouguerra, L. Karlsson, and A. Saffiotti. Handling uncertainty in semantic-
knowledge based execution monitoring. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 437–443, 2007.

[7] S. Lemai and F. Ingrand. Interleaving temporal planning and execution in
robotics domains. In National Conf. on AI, pages 617–622, 2004.

[8] K. Haigh and M. Veloso. Planning, execution and learning in a robotic agent.
In Int. Conf. on AI Planning Systems, pages 120–127, 1998.

[9] O. Pettersson, L. Karlsson, and A. Saffiotti. Model-free execution monitoring
in behavior-based robotics. IEEE Trans. on Systems, Man and Cybernetics,
Part B, 37(4):890–901, 2007.

[10] G. DeGiacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-
level robot programs. In Int. Conf. on Principles of Knowledge Representation
and Reasoning, pages 453–465, 1998.

[11] M. Fichtner, A. Großmann, and M. Thielscher. Intelligent execution monitoring
in dynamic environments. Fundamenta Informaticae, 57(2-4):371–392, 2003.

[12] K. BenLamine and F. Kabanza. History checking of temporal fuzzy logic
formulas for monitoring behavior-based mobile robots. In IEEE Int. Conf.
Tools with AI, pages 312–319, 2000.

25

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

[13] F. Ingrand, M. Georgeff, and A. Rao. An architecture for real-time reasoning
and system control. IEEE Expert: Intelligent Systems and Their Applications,
7(6):34–44, 1992.

[14] R. Firby. Building symbolic primitives with continuous control routines. In Int.
Conf. on AI Planning Systems, pages 62–69, 1992.

[15] J. Fernández, R. Sanz, and A. Diéguez. Probabilistic models for monitoring
and fault diagnosis: Application and evaluation in a mobile robot. Applied AI,
18(1):43–67, 2004.

[16] V. Verma, G. Gordon, R. Simmons, and S. Thrun. Particle filters for rover fault
diagnosis. IEEE Robotics & Automation Magazine, 2004.

[17] G. Fraser, G. Steinbauer, and F. Wotawa. Plan execution in dynamic
environments. In Int. Conf. on Industrial and Engineering Applications of AI
and Expert Systems, pages 208–217, 2005.

[18] J. Fernández and R. Simmons. Robust execution monitoring for navigation
plans. In IEEE/RSJ Conf. on Intelligent Robots and Systems, pages 551–557,
1998.

[19] M. Beetz and D. McDermott. Fast probabilistic plan debugging. In European
Conf. on Planning, pages 77–90, 1997.

[20] C. McCarthy and M. Pollack. Towards focused plan monitoring: A technique
and an application to mobile robots. Autonomous Robots, 9(1):71–81, 2000.

[21] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernández-Madrigal,
and J. González. Multi-hierarchical semantic maps for mobile robotics. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 3492–3497, 2005.

[22] C. Theobalt, J. Bos, T. Chapman, A. Espinosa-Romero, M. Fraser, G. Hayes,
E. Klein, T. Oka, and R. Reeve. Talking to Godot: Dialogue with a mobile robot.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 1338–1343,
2002.

[23] J. Hois, M. Wünstel, J. Bateman, and T. Röfer. Dialog-based 3D-image
recognition using a domain ontology. In Int. Conf. on Spatial Cognition, pages
107–126, 2006.

[24] A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, and H. Surmann.
3D mapping with semantic knowledge. In RoboCup Int. Symposium, pages 335–
346, 2005.

[25] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[26] R. MacGregor. Retrospective on LOOM. Technical report, Information Sciences
Institute, University of Southern California, 1999.

26

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

[27] A. Bouguerra, L. Karlsson, and A. Saffiotti. Active execution monitoring using
planning and semantic knowledge. In ICAPS Workshop on Planning and Plan
Execution for Real-World Systems, 2007.

[28] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, chapter
14–15. Prentice Hall, second edition, 2003.

[29] D. Koller, A. Levy, and A. Pfeffer. P-classic: A tractable probabilistic
description logic. In National Conf. on AI, pages 390–397, 1997.

[30] A. Saffiotti, K. Konolige, and E. Ruspini. A multivalued logic approach to
integrating planning and control. Artificial Intelligence, 76(1-2):481–526, 1995.

[31] A. Ramisa, S. Vasudevan, D. Scaramuzza, R. de Mántaras, and R. Siegwart.
A tale of two object recognition methods for mobile robots. In Int. Conf. on
Computer Vision Systems, pages 353–362, 2008.

[32] D. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. of
Computer Vision, 60(2):91–110, 2004.

[33] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 2149–2154, 2004.

[34] A. Saffiotti and M. Broxvall. PEIS ecologies: Ambient intelligence meets
autonomous robotics. In Int. Conf. on Smart Objects and Ambient Intelligence,
pages 275–280, 2005.

[35] A. Bouguerra. Robust Execution of Robot Task-Plans: A Knowledge-based
Approach. PhD thesis, Department of Technology, Örebro University, Sweden,
2008.

[36] R. Möller, V. Haarslev, and M. Wessel. On the scalability of description logic
instance retrieval. In Int. Workshop on Description Logics, 2006.

[37] Y. Guo, A. Qasem, and J. Heflin. Large scale knowledge base systems: An
empirical evaluation perspective. In National Conf. on AI, 2006.

[38] D. Fox, S. Thrun, F. Dellaert, and W. Burgard. Particle filters for mobile robot
localization. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential
Monte Carlo Methods in Practice. Springer Verlag, 2000.

[39] N. Howden, R. Rnnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents
– Summary of an Agent Infrastructure. In Int. Conf. on Aut. Agents, 2001.

[40] T. Lukasiewicz. Expressive probabilistic description logics. Artificial
Intelligence, 172(6-7):852–883, 2008.

27

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

A Appendix: Semantic Knowledge Base

;; ------------- Manipulation Domain ---------------

; Relations

(defrelation has-handle :domain cup :range handle)(defrelation has-cap :domain bottle :range cap)

(defrelation has-cover :domain container :range cover)

;;---

; Atomic Concepts

(defconcept handle)(defconcept cover)(defconcept cap)(defconcept container)

;;---

; Defined Concepts

(defconcept cup

:is (and container (exactly 1 has-handle)(exactly 0 has-cover)(exactly 0 has-cap)))

(defconcept glass

:is (and container (exactly 0 has-handle)(exactly 0 has-cover)(exactly 0 has-cap)))

(defconcept bottle

:is (and container (exactly 0 has-handle)(exactly 0 has-cover)(exactly 1 has-cap)))

(defconcept box

:is (and container (exactly 0 has-handle)(exactly 1 has-cover)(exactly 0 has-cap)))

(defconcept bowl :is (and container (exactly 0 has-handle)(exactly 0 has-cover)(exactly 0 has-cap)))

;; ------------- Navigation Domain ---------------

; Relationships

(defrelation has-oven :domain kitchen :range oven) (defrelation has-bed :domain room :range bed)

(defrelation has-sofa :domain room :range sofa)(defrelation has-table :domain location :range table)

(defrelation has-tv-set :domain room :range tv-set)(defrelation has-fridge :domain room :range fridge)

(defrelation has-pc :domain room :range pc) (defrelation has-plant :domain location :range plant)

(defrelation has-clothes-dryer :domain room :range clothes-dryer)

(defrelation has-washing-machine :domain utility-room :range washing-machine)

(defrelation has-sink :domain (or kitchen bathroom utility-room) :range sink)

(defrelation has-tub :domain (or bathroom utility-room) :range tub)

(defrelation has-chair :domain location :range chair)

;;---

; Atomic Concepts

(defconcept oven)(defconcept bed)(defconcept sofa)(defconcept table)(defconcept washing-machine)

(defconcept sink)(defconcept tub)(defconcept chair)(defconcept fridge)(defconcept tv-set)

(defconcept clothes-dryer)(defconcept plant)(defconcept pc)(defconcept room)(defconcept corridor)

;;---

; Defined Concepts

(defset location :is ’(corridor room))

(defconcept bedroom :is

(and room (at-least 1 has-bed)(at-most 1 has-sofa)(exactly 0 has-sink)(exactly 0 has-oven)

(exactly 0 has-tub)(exactly 0 has-washing-machine)(exactly 0 has-clothes-dryer)))

(defconcept living-room :is

(and room (at-least 1 has-sofa)(exactly 1 has-tv-set)(exactly 0 has-sink)(exactly 0 has-oven)

(exactly 0 has-tub)(exactly 0 has-washing-machine)(exactly 0 has-clothes-dryer)))

(defconcept kitchen :is

(and room (at-least 1 has-sink)(exactly 1 has-oven)(at-least 1 has-fridge)(at-least 1 has-table)

(exactly 0 has-pc)(at-most 1 has-sofa)(exactly 0 has-bed)(exactly 0 has-tub)

(exactly 0 has-washing-machine)(exactly 0 has-clothes-dryer)))

(defconcept bathroom :is

(and room (at-least 1 has-sink)(exactly 1 has-tub)(at-most 2 has-chair)(at-most 1 has-table)

(exactly 0 has-pc)(exactly 0 has-bed)(exactly 0 has-sofa)(exactly 0 has-fridge)

(exactly 0 has-oven)(exactly 0 has-washing-machine)))

(defconcept office :is

(and room (at-least 1 has-table)(at-least 1 has-chair)(at-least 1 has-pc)(exactly 0 has-bed)

(at-most 1 has-sofa)(exactly 0 has-fridge)(exactly 0 has-sink)(exactly 0 has-oven)

(exactly 0 has-tub)(exactly 0 has-washing-machine)(exactly 0 has-clothes-dryer)))

(defconcept utility-room :is

(and room (at-least 1 has-washing-machine)(exactly 1 has-clothes-dryer)(exactly 0 has-oven)

(exactly 0 has-bed)(exactly 0 has-sofa)(exactly 0 has-pc)(exactly 0 has-fridge)))

28

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

B Appendix: Parameters Used in Probabilistic SKEMon

Parameters of the manipulation domain. The state variables represent
the number of handles (S1), covers (S2), and caps (S3). The maximum number
of objects that a container can have is always one. Therefore, the values of the
state functions p(sj|r) are either 0 or 1. For the sensing model, the following
probability parameters of the multinomial functions were used, such that p4

is the probability of not seeing the corresponding object:

p1 p4 p2 p3 p4 p2 p3 p4

handle 0.8 0.2 cover 0.6 0.2 0.2 cap 0.2 0.6 0.2

Parameters of the navigation domain. There are thirteen state variables
representing the number of objects of furniture items. The domains of such
variables were fixed from zero to a certain maximum number as follows:

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

Object bed sofa sink oven table tv chair tub fridge plant pc c-d w-m

max # 2 2 2 1 2 1 4 1 1 3 1 1 1

where w-m and c-d stand for washing-machine and clothes-dryer respectively.
The values of the state functions were subjective and were set as described
in section 4.2 with the exceptions listed in table B.1. For the sensing model,
we only considered misclassification of few classes of objects as shown in table
B.1. Objects of the other classes were either seen (with probability 0.8) or
missed (with probability 0.2).

Table B.1
Parameters used in the experiments. The left table shows state functions, while the
right table shows the probabilities of the multinomial functions, such that p14 is the
probability of not seeing the corresponding object.

i = 0 i = 1 i = 2

P (S1 = i|bedroom) 0.0 0.7 0.3

P (S2 = i|living-room) 0.0 0.6 0.4

P (S3 = i|kitchen) 0.0 0.4 0.6

P (S5 = i|kitchen) 0.0 0.8 0.2

bed p1 = 0.8; p2 = 0.1; p14 = 0.1

sofa p1 = 0.2; p2 = 0.7; p14 = 0.1

sink p3 = 0.7; p4 = 0.1; p14 = 0.2

oven p3 = 0.1; p4 = 0.7; p14 = 0.2

table p5 = 0.8; p6 = 0.1; p14 = 0.1

29

Cite as: A. Bouguerra, L. Karlsson and A. Saffiotti. Monitoring the Execution of Robot Plans Using
Semantic Knowledge. Robotics and Autonomous Systems 56(11):942–954, 2008.

