Outline

- Why Machine Learning?
- What is a well-defined learning problem?
- An example: learning to play checkers
- What questions should we ask about Machine Learning?
Why Machine Learning

• Recent progress in algorithms and theory
• Growing flood of online data
• Computational power is available
• Budding industry

Three niches for machine learning:

• Data mining: using historical data to improve decisions
 – medical records → medical knowledge
• Software applications we can’t program by hand
 – autonomous driving
 – speech recognition
• Self customizing programs
 – Newsreader that learns user interests
Typical Datamining Task

Data:

\[\text{Patient103}_{\text{time}=1} \rightarrow \text{Patient103}_{\text{time}=2} \rightarrow \cdots \rightarrow \text{Patient103}_{\text{time}=n} \]

<table>
<thead>
<tr>
<th>Patient 103 (time=1)</th>
<th>Patient 103 (time=2)</th>
<th>Patient 103 (time=n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 23</td>
<td>Age: 23</td>
<td>Age: 23</td>
</tr>
<tr>
<td>FirstPregnancy: no</td>
<td>FirstPregnancy: no</td>
<td>FirstPregnancy: no</td>
</tr>
<tr>
<td>Anemia: no</td>
<td>Anemia: no</td>
<td>Anemia: no</td>
</tr>
<tr>
<td>Diabetes: no</td>
<td>Diabetes: YES</td>
<td>Diabetes: no</td>
</tr>
<tr>
<td>PreviousPrematureBirth: no</td>
<td>PreviousPrematureBirth: no</td>
<td>PreviousPrematureBirth: no</td>
</tr>
<tr>
<td>Ultrasound: ?</td>
<td>Ultrasound: abnormal</td>
<td>Ultrasound: ?</td>
</tr>
<tr>
<td>Elective C−Section: ?</td>
<td>Elective C−Section: no</td>
<td>Elective C−Section: ?</td>
</tr>
</tbody>
</table>

Given:

- 9714 patient records, each describing a pregnancy and birth
- Each patient record contains 215 features

Learn to predict:

- Classes of future patients at high risk for Emergency Cesarean Section
Datamining Result

Data:

Patient103_{time=1} → Patient103_{time=2} → ... → Patient103_{time=n}

- Age: 23
- FirstPregnancy: no
- Anemia: no
- Diabetes: no
- PreviousPrematureBirth: no
- Ultrasound: ?
- Elective C−Section: ?
- Emergency C−Section: ?

...

- Age: 23
- FirstPregnancy: no
- Anemia: no
- Diabetes: YES
- PreviousPrematureBirth: no
- Ultrasound: abnormal
- Elective C−Section: no
- Emergency C−Section: ?

...

- Age: 23
- FirstPregnancy: no
- Anemia: no
- Diabetes: no
- PreviousPrematureBirth: no
- Ultrasound: ?
- Elective C−Section: no
- Emergency C−Section: Yes

One of 18 learned rules:

If No previous vaginal delivery, and Abnormal 2nd Trimester Ultrasound, and Malpresentation at admission
Then Probability of Emergency C−Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60
Credit Risk Analysis

Data:

Customer103: (time=t0)
- Years of credit: 9
- Loan balance: $2,400
- Income: $52k
- Own House: Yes
- Other delinquent accts: 2
- Max billing cycles late: 3
- Profitable customer?: ?

Customer103: (time=t1)
- Years of credit: 9
- Loan balance: $3,250
- Income: ?
- Own House: Yes
- Other delinquent accts: 2
- Max billing cycles late: 4
- Profitable customer?: ?

... (more data)

Customer103: (time=tn)
- Years of credit: 9
- Loan balance: $4,500
- Income: ?
- Own House: Yes
- Other delinquent accts: 3
- Max billing cycles late: 6
- Profitable customer?: No

Rules learned from synthesized data:

If Other-Delinquent-Accounts > 2, and
Number-Delinquent-Billing-Cycles > 1
Then Profitable-Customer? = No
[Deny Credit Card application]

If Other-Delinquent-Accounts = 0, and
(Income > $30k) OR (Years-of-Credit > 3)
Then Profitable-Customer? = Yes
[Accept Credit Card application]
Other Prediction Problems

Customer purchase behavior:

<table>
<thead>
<tr>
<th>Customer103: (time=t0)</th>
<th>Customer103: (time=t1)</th>
<th>Customer103: (time=tn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: M</td>
<td>Sex: M</td>
<td>Sex: M</td>
</tr>
<tr>
<td>Age: 53</td>
<td>Age: 53</td>
<td>Age: 53</td>
</tr>
<tr>
<td>Income: $50k</td>
<td>Income: $50k</td>
<td>Income: $50k</td>
</tr>
<tr>
<td>Own House: Yes</td>
<td>Own House: Yes</td>
<td>Own House: Yes</td>
</tr>
<tr>
<td>MS Products: Word</td>
<td>MS Products: Word</td>
<td>MS Products: Word</td>
</tr>
<tr>
<td>Computer: 386 PC</td>
<td>Computer: Pentium</td>
<td>Computer: Pentium</td>
</tr>
<tr>
<td>Purchase Excel?: ?</td>
<td>Purchase Excel?: ?</td>
<td>Purchase Excel?: Yes</td>
</tr>
</tbody>
</table>

Customer retention:

<table>
<thead>
<tr>
<th>Customer103: (time=t0)</th>
<th>Customer103: (time=t1)</th>
<th>Customer103: (time=tn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: M</td>
<td>Sex: M</td>
<td>Sex: M</td>
</tr>
<tr>
<td>Age: 53</td>
<td>Age: 53</td>
<td>Age: 53</td>
</tr>
<tr>
<td>Income: $50k</td>
<td>Income: $50k</td>
<td>Income: $50k</td>
</tr>
<tr>
<td>Own House: Yes</td>
<td>Own House: Yes</td>
<td>Own House: Yes</td>
</tr>
<tr>
<td>Checking: $5k</td>
<td>Checking: $20k</td>
<td>Checking: $0</td>
</tr>
<tr>
<td>Savings: $15k</td>
<td>Savings: $0</td>
<td>Savings: $0</td>
</tr>
<tr>
<td>Current−customer?: yes</td>
<td>Current−customer?: yes</td>
<td>Current−customer?: No</td>
</tr>
</tbody>
</table>

Process optimization:

<table>
<thead>
<tr>
<th>Product72: (time=t0)</th>
<th>Product72: (time=t1)</th>
<th>Product72: (time=tn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage: mix</td>
<td>Stage: cook</td>
<td>Stage: cool</td>
</tr>
<tr>
<td>Mixing−speed: 60rpm</td>
<td>Temperature: 325</td>
<td>Fan−speed: medium</td>
</tr>
<tr>
<td>Viscosity: 1.3</td>
<td>Viscosity: 3.2</td>
<td>Viscosity: 1.3</td>
</tr>
<tr>
<td>Fat content: 15%</td>
<td>Fat content: 12%</td>
<td>Fat content: 12%</td>
</tr>
<tr>
<td>Density: 2.8</td>
<td>Density: 1.1</td>
<td>Density: 1.2</td>
</tr>
<tr>
<td>Spectral peak: 2800</td>
<td>Spectral peak: 3200</td>
<td>Spectral peak: 3100</td>
</tr>
<tr>
<td>Product underweight?: ??</td>
<td>Product underweight?: ??</td>
<td>Product underweight?: Yes</td>
</tr>
</tbody>
</table>
Problems Too Difficult to Program by Hand

ALVINN [Pomerleau] drives 70 mph on highways

Software that Customizes to User

http://www.wisewire.com

Where Is this Headed?

Today: tip of the iceberg

- First-generation algorithms: neural nets, decision trees, regression ...
- Applied to well-formated database
- Budding industry

Opportunity for tomorrow: enormous impact

- Learn across full mixed-media data
- Learn across multiple internal databases, plus the web and newsfeeds
- Learn by active experimentation
- Learn decisions rather than predictions
- Cumulative, lifelong learning
- Programming languages with learning embedded?
Relevant Disciplines

- Artificial intelligence
- Bayesian methods
- Computational complexity theory
- Control theory
- Information theory
- Philosophy
- Psychology and neurobiology
- Statistics
- ...
What is the Learning Problem?

Learning = Improving with experience at some task

- Improve over task T,
- with respect to performance measure P,
- based on experience E.

E.g., Learn to play checkers

- T: Play checkers
- P: % of games won in world tournament
- E: opportunity to play against self
Learning to Play Checkers

- T: Play checkers
- P: Percent of games won in world tournament
- What experience?
- What exactly should be learned?
- How shall it be represented?
- What specific algorithm to learn it?
Type of Training Experience

- Direct or indirect?
- Teacher or not?

A problem: is training experience representative of performance goal?
Choose the Target Function

- \(\text{ChooseMove} : \text{Board} \rightarrow \text{Move} \)
- \(V : \text{Board} \rightarrow \mathbb{R} \)
- ...
Possible Definition for Target Function V

- if b is a final board state that is won, then $V(b) = 100$
- if b is a final board state that is lost, then $V(b) = -100$
- if b is a final board state that is drawn, then $V(b) = 0$
- if b is a not a final state in the game, then $V(b) = V(b')$, where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.

This gives correct values, but is not operational
Choose Representation for Target Function

- collection of rules?
- neural network?
- polynomial function of board features?
- ...

A Representation for Learned Function

\[w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) + w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_6 \cdot rt(b) \]

- \(bp(b) \): number of black pieces on board \(b \)
- \(rp(b) \): number of red pieces on \(b \)
- \(bk(b) \): number of black kings on \(b \)
- \(rk(b) \): number of red kings on \(b \)
- \(bt(b) \): number of red pieces threatened by black (i.e., which can be taken on black’s next turn)
- \(rt(b) \): number of black pieces threatened by red
Obtaining Training Examples

- $V(b)$: the true target function
- $\hat{V}(b)$: the learned function
- $V_{train}(b)$: the training value

One rule for estimating training values:
- $V_{train}(b) \leftarrow \hat{V}(Successor(b))$
Choose Weight Tuning Rule

LMS Weight update rule:

Do repeatedly:

- Select a training example b at random

1. Compute $\text{error}(b)$:

 \[
 \text{error}(b) = \text{V}_{\text{train}}(b) - \hat{V}(b)
 \]

2. For each board feature f_i, update weight w_i:

 \[
 w_i \leftarrow w_i + c \cdot f_i \cdot \text{error}(b)
 \]

c is some small constant, say 0.1, to moderate the rate of learning
Design Choices

Determine Type of Training Experience
- Games against self
- Games against experts
- Table of correct moves

Determine Target Function
- Board ➝ move
- Board ➝ value

Determine Representation of Learned Function
- Polynomial
- Linear function of six features
- Artificial neural network

Determine Learning Algorithm
- Gradient descent
- Linear programming

Completed Design
Some Issues in Machine Learning

- What algorithms can approximate functions well (and when)?
- How does number of training examples influence accuracy?
- How does complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- What are the theoretical limits of learnability?
- How can prior knowledge of learner help?
- What clues can we get from biological learning systems?
- How can systems alter their own representations?