The Prospective Student’s Introduction to the Robot Learning Problem

Ulrich Nehmzow and Tom Mitchell

Department of Computer Science
University of Manchester
Technical Report Series
UMCS-95-12-6
The Prospective Student’s Introduction to the Robot Learning Problem*

Ulrich Nehmzow

Department of Computer Science
University of Manchester
Oxford Road, Manchester, UK.
u.nehmzow@cs.man.ac.uk

Tom Mitchell

Department of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213
Tom.Mitchell@cs.cmu.edu

December 1995

*Refereed by: Ian Pratt
Abstract

The paper presents an introduction to the area of learning in robot control. Fundamental principles are discussed, learning mechanisms such as reinforcement learning are discussed, and open questions and research areas are identified.

Contents

1 Introduction 2
2 The Problem 2
3 Fundamental Principles 3
4 Objectives 4
5 Learning 5
 5.1 What and How to Learn 5
 5.2 The Target Function 7
 5.3 Available Training Information 7
 5.4 The robot learning curriculum 8
6 Learning Mechanisms 9
 6.1 The phototaxis example 10
 6.2 Advanced robot learning 10
7 Open Questions 11
 7.1 Task Description 11
 7.1.1 Learning from delayed rewards 11
 7.1.2 Modification of the reward function through learning 12
 7.2 Concept learning 12
 7.3 Dynamic robot learning 12
 7.4 Validation 13
8 Summary 13
1 Introduction

Why is “learning” in robots an interesting problem, and why should it be tackled using real robots, rather than numerical models of them? The purpose of this paper is to give an introduction to the problems research in robot learning addresses, to present some attempts at solving them, and, most of all, to point out what remains to be done.

Thus the paper can be read in a number of ways: firstly, by the interested novice as an introduction to the field of robot learning, secondly, as a survey of work done so far, and thirdly, by the prospective student as a guide towards interesting and unsolved problems within the field of robot learning.

The paper first gives an introduction to robot learning, discussing the actual goings-on inside a robot as well as the additional components needed to make the robot do what it is supposed to do. It then introduces the idea that, for complex tasks performed in semi-structured environments, learning is necessary to make the robot successful in performing a specified task. A tentative curriculum of robot learning is presented.

The paper then discusses reinforcement learning in particular, because this learning method is, to date, the most widely used learning paradigm applied to robotics. We then suggest mechanisms to improve the performance of reinforcement learning systems. The paper concludes by discussing unsolved problems, the “good thesis topics” the prospective student has been waiting for.

2 The Problem

In this paper, the term “robot” is used to describe a physical device, interacting with the real world, that has the following three properties:

1. the ability to measure properties of the environment through sensors,
2. the ability to perform physical actions of an object-manipulation or locomotion type in the environment, and
3. presence of a control structure that determines the action to be performed at any given moment.

Figure 1 shows such a mobile robot, equipped with various sensors to perceive its environment, and actuators that allow it to perform actions in the world. The robot has a particular task to achieve; this is what the box labelled “task description” is meant to signify.

The aim of this paper is to replace the question mark in figure 1 with some appropriate structure. In order to do this the following two questions need to be answered:
1. What happens inside the robot, after sensor signals have been received and before actuator signals have been generated, independent of the particular control strategy adopted?

2. Which functions ought to be computed by the controller in order to make the robot achieve a specified task?

There are at least two ways to approach the second question. One way to determine the adequate control structure would be to model as closely as possible the known aspects of the control strategies used by the most successful agents on earth, living beings. The purpose of such an approach is to verify or refute models of animal cognition.

For the purpose of this paper a different approach is adopted: the primary interest here is to establish ways to make the robot perform a given task as reliably and accurately as possible. Biologically inspired control strategies may be used for this purpose, but anything else that works well will be acceptable, too. We call this the engineering approach to robot learning.

3 Fundamental Principles

The fundamental principles of robot-environment interaction are depicted in figure 2; fundamental, because they are independent of a particular controller implementation.

As the robot interacts with the environment, certain properties of this environment are sensed with the robot’s sensors. What makes the robot learning problem more difficult than other (non-robot) machine learning problems is the fact that there are a number of additional unknowns: the precise states of the robot and the world are unknown and estimates have to be used; furthermore the function g that
maps true world state on to perceived world state is unknowable\(^1\).

Oreskes, Shrader-Frechette and Belitz ([Oreskes et al. 94]) elaborate on these points in a discussion of the relationship between numerical models and their physical counterparts in the earth sciences.

Defining “verification” as “demonstration of truth” in the sense of \(p \rightarrow q \land p \rightarrow q \) and “validation” as “establishment of legitimacy” given in terms of contracts\(^2\), arguments\(^3\) and methods\(^4\), they conclude that “verification and validation of numerical models of natural systems is impossible.” Applied to the robot learning scenario, which is a natural system, their conclusion underlines what was said above: not only do we have to address the machine learning problem of finding adequate mappings between perceived input state and desired output state, we also have to cope with the fact that any numerical model of the function \(g \) that maps world state onto perceived state cannot be formally verified or validated.

4 Objectives

We need to define the objectives of the learning process. This is the “task description” of figure 1. The most precise way to describe the objectives of the robot is to define sensor states that are to be achieved, and sensor states that are to be avoided. This is a description of goals at the level of robot hardware, and may not be suitable to describe all conceivable goals (for instance, some goals may only be describable by multiple sensor states, including past sensor readings). However, when it is applicable it provides a precise and deterministic way of encoding what the robot is supposed to achieve.

We measure the success of any learning strategy in terms of these goals. This is important: in section 6.1 we discuss how the performance of robots depends on the task description. For the purpose of this paper, success is measured in terms of specified goals, not in terms of ‘elegance of solution’ or performance-related criteria.

The one component of figure 2 which we can fill with whatever function we wish is the block labelled “control function” \(f \). This function \(f \) maps perceived state of robot and world on to actuator commands. It may (and usually will) contain sensor preprocessing commands, as well as the encoding of the control strategy.

Our goal is to make the robot perform a specified task in its environment in as reliable and efficient a manner as possible. Our means is to select the control function \(f : S \rightarrow A \) accordingly (\(S \) is the current perceived state, and \(A \) the action chosen).

There are at least two choices for selecting \(f \). The simplest way is to pre-program a fixed strategy that maps perception to action, a “hardwired” control program. This works satisfactorily for many basic robotics applications. However, as the complexity of the task (or of the environment) increases, the problem of perceptual discrepancy also increases. This is the problem that the human designer inevitably has a very different perception of the world compared with the robot’s view, a fact that makes him the less able to determine a priori which of the sensor signals will be relevant for a particular task and which won’t the more complex a task becomes. Eventually, this discrepancy between human and robot perception can only be resolved through experiments, i.e. trial and error.

To give an example: in 1989, we used simple mobile robots for experiments in robot learning. The robots were able to learn fundamental motor skills such as obstacle avoidance by associating perceptions with motor responses in an artificial neural network ([Nehmzow et al. 89]). One would rightly argue that to make a robot with two whiskers avoid convex obstacles, a simple hard wired control function of “move away from the side where a whisker touches” would suffice. However, because of their learning capability, these robots were able to escape from dead ends, even though this situation had never been anticipated during the controller design process (perceptual discrepancy problem!); they quickly learned to keep turning in one direction whenever any whisker touched ([Nehmzow 94]).

The conclusion is that the more complex the task, agent or environment are, the more unsatisfactory

\(^1\) \(g \) is a function of many variables, such as sensor characteristics, environment characteristics, and characteristics of the information processing devices used.

\(^2\) A valid contract is one that has not been nullified by action.

\(^3\) A valid argument is one that contains no obvious errors of logic.

\(^4\) A valid method is one that contains no known or detectable flaws and is internally consistent.
it is to use hard wired control functions. A second way of answering the question for an adequate control function f is, therefore, to make the robot learn.

5 Learning

The robot learning problem is to design a robot so that it improves its performance through experience. To be precise, we must specify what performance and what experience are.

Suppose the robot’s performance is to be evaluated in terms of its ability to achieve some set of goals G. More precisely, suppose each goal is of the form $X \rightarrow Y; R$, where X and Y are both conditions representing a set of possible states, and where R is some real valued reward. The goal $X \rightarrow Y; R$ is interpreted as “if the robot finds itself in a state satisfying condition X, then the goal of reaching a state satisfying condition Y becomes active, for which a reward R is received.” For example, the goal of recharging the battery when it is low can be represented in this way, by setting X to the sensory input “battery level is low,” Y to the sensory input “robot senses that it is electrically connected to the battery charger,” and R to 100. Given a set of such goals, we can define a quantitative measure of robot performance such as the proportion of times that the robot successfully achieves condition Y given that condition X has been encountered, or the sum of the rewards it receives over time. If we wish, we might further elaborate our measure to include the cost or delay of the actions leading from condition X to condition Y.

Given this definition of robot performance, relative to some set of goals G, we can say that the robot learning problem is to improve robot performance through experience. Thus, robot learning is also relative to the particular goals and performance measure. A robot learning algorithm that is successful relative to one set of goals might be unsuccessful with respect to another. Of course we are most interested in general-purpose learning algorithms that enable the robot to become increasingly successful with respect to a wide variety of goal sets.

5.1 What and How to Learn

What and how should we design robots to learn? Two important dimensions along which approaches vary are (1) the exact function(s) to be learned and (2) the nature of the training information available. Here we consider a few possible learning approaches, then summarise some of the more significant dimensions of the space of possible approaches.

The most direct way to attack the robot learning problem is to learn the control function f directly, from training examples corresponding to input-output pairs of f. Recall that f is a function of the form $f : S \rightarrow A$, where S is the perceived state, and A is the chosen control action. One system that learns f directly is Pomerleau’s AIVINN system. It learns the control function f for steering a vehicle driving at 65 mph. The system learns from training data obtained by watching a human steer the vehicle for a few minutes. Each training example consists of a perceived state (a camera image of the road ahead), along with a steering action (obtained by observing the human driver). A neural network is trained to fit these training examples. The system has been successful in learning to drive on a variety of public roads.

In other cases, training examples of the function f might not be directly available. Consider, for example, a robot with no human trainer, with only the ability to determine when the goals in its set G are satisfied and what reward is associated with achieving that goal. For example, in a navigation task in which an initially invisible goal location is to be reached, and in which the robot cannot exploit any gradients present in the environment for navigation, a sequence of many actions is needed before the task is accomplished. However, if it has no external trainer to suggest the correct action as each intermediate state, its only training information will be the delayed reward it eventually achieves when the goal is satisfied. In this case, it is not possible to learn the function f directly because no input-output pairs of f are available. An alternative approach that has been used successfully in this case is to learn a different

5Note the importance of the condition X in stating the goal - without it we could only represent “full-time” goals such as “always seek to be electrically connected to the battery charger.”
function called Q, and use it to indirectly compute the control function f. The Q function is a mapping of the form $Q : S \times A \rightarrow V$, where V is the value of performing action A in state S. More precisely, the value V of a pair S, A is the expected sum of future rewards (each discounted exponentially by its delay) obtained by executing action A from state S, then following optimal actions thereafter. In short, the Q function is simply an evaluation function over $S \times A$. The control function f can then be computed from Q as the one that returns the maximum expected future reward. How can the robot obtain training values for learning Q? Given a state s_t at some time t and action a_t, the robot can estimate the training value of $Q(s_t, a_t)$ by performing action a_t to obtain the next perceived state s_{t+1}. It can then estimate the training value of $Q(s_t, a_t)$ as $\max_{a \in A} Q(s_{t+1}, a)$ where Q is its currently learned approximation to Q. In this way, the currently learned evaluation function \hat{Q} applied to state s_{t+1} is used to estimate training values for the preceding state s_t. Surprisingly, it can be shown that under certain conditions, this method converges to the optimal control procedure [Watkins 89]. This approach of Q learning is one style of reinforcement learning. In general, reinforcement learning involves learning to control the robot based on a (possibly delayed) scalar training reward, rather than training examples specifying the desired state-action associations.

Figure 3: Diagram of the robot learning problem, ignoring temporal aspects

Figure 3 shows the general robot reinforcement learning scenario: the mapping between perceived state and motor commands is acquired by the learner, perhaps by learning a different function such as Q. Learning is based on a reinforcement training signal received from the teacher to alter its control policy f.

The above examples illustrate two key dimensions of the robot learning problem: the nature of training information available to the learner, and the choice of specific target function to be learned.

**In figure 3 the teacher is part of the robot controller, enabling the robot to learn autonomously. Alternatively, the teacher could be outside, in which case the robot would learn from external feedback. A robotics implementation of such a system is discussed in [Martin & Nehmzow 93].

6
5.2 The Target Function

Above we saw two ways to formulate the robot control learning task: learning the control function $f : S \to A$ and learning the function $Q : S \times A \to V$. Other functions that might be learned and are relevant include (see also figure 4)

- An evaluation function over states, $H : S \to V$ where V is the expected discounted future reward achievable beginning at state S. Defined in terms of the earlier Q function, $H(s) = \max_{a \in A} Q(s, a)$. This evaluation function, like the Q function, can be used to compute the desired control function f. It has been used, for example, in Sutton’s Adaptive Heuristic Critic [Sutton 91]. However, computing f from H requires the ability to predict the effects of actions before executing them, whereas computing f from Q does not require this ability.

- A next state function to predict the effect of actions on the state, $NextState : S \times A \to S'$, where S' is the state resulting from applying action A to state S. Given a perfect next state function, one could compute f via look-ahead search to determine which action leads to the greatest reward. Even an imperfectly learned $NextState$ has been shown to be helpful background knowledge to improve learning the function Q [O’Sullivan et al. 95]. One intriguing property of $NextState$ is that it is task-independent (i.e., unlike f, Q, and H, it is not specific to any goal or reward function). Therefore a robot that learns $NextState$ can use it regardless of the current goal. A second nice property of $NextState$ is that it is particularly easy to collect training examples, since each action performed by the robot provides a training example of this function.

- A function to map from raw sensory input and actions to a useful representation of the robot’s state, $Perceive : Sensor^* \times A^* \to S$. This corresponds to learning a useful state representation, where the state S is computed from possibly the entire history of raw sensor inputs $Sensor^*$, as well as the history of actions performed A^*. It appears particularly difficult to obtain direct training example of this function. While no current systems successfully learn this function, it is possible that recurrent neural networks are relevant to learning this.

<table>
<thead>
<tr>
<th>Output</th>
<th>Input →</th>
<th>S</th>
<th>$S \times A$</th>
<th>$Sensor^* \times A^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action A</td>
<td>Control function f</td>
<td>$____$</td>
<td>$____$</td>
<td>$____$</td>
</tr>
<tr>
<td>Discounted future reward</td>
<td>Adaptive Heuristic Critic</td>
<td>Q-learning</td>
<td>$___$</td>
<td>$___$</td>
</tr>
<tr>
<td>next state S'</td>
<td>prediction</td>
<td>$___$</td>
<td>$___$</td>
<td>$___$</td>
</tr>
<tr>
<td>S</td>
<td>perception</td>
<td>$___$</td>
<td>$___$</td>
<td>$___$</td>
</tr>
</tbody>
</table>

Figure 4: Classification by target function

Other functions are possible as well. The issue of what collection of target functions should be learned by a robot is one of the key open research questions regarding robot learning. It is closely related to the question of what is the best general architectural for a robot. The above list is intended to suggest some of the possibilities, but is by no means complete.

5.3 Available Training Information

As is clear from the above discussion, the type of training information available has a strong impact on the choice of learning method. The nature of the training data available can be understood along two orthogonal axes: supervised versus unsupervised learning on the one hand, and learning by immediate feedback versus learning by delayed feedback on the other hand (see also figure 5).

In the general case of supervised learning, training information about values of the target function are presented to the learning mechanism. A prototypical example is the supervised training data obtained from the human trainer for the ALVINN system described above. The backpropagation algorithm for training artificial neural networks is one common technique for supervised learning
Immediate Reward	Delayed Reward
Self supervised | [Nehmzow et al. 89] | [Kaelbling 90]
Externally Supervised | [Pomerleau 93, Martin & Nehmzow 95] | [Sutton 84]
Unsupervised | [Kohonen 88] | —

Figure 5: Classification by training information

([Rumelhart et al 86]). The training information provided in supervised control learning may be examples of the action to be performed, as in ALVINN, or more limited information in the form of a scalar, performance-related reward, not indicating the correct action itself ([Sutton 91]). The latter is the case in reinforcement learning as described above. Note that in supervised learning, the supervisor providing the training information may be either an external trainer (as in ALVINN), or a module within the robot itself (as in situations where the robot assigns rewards to goal states). We refer to the latter as self-supervised learning, because one component of the robot is acting as a teacher for another component (examples of implementations of self-supervised learning controllers are given in [Nehmzow et al. 89, Nehmzow 94]).

Unsupervised learning, on the other hand, performs a clustering of incoming information without using input-output pairs for training. Kohonen’s self-organizing feature map is a well known example of an unsupervised learning mechanism ([Kohonen 88]). Whilst this paper is concerned with making robots achieve specified goals (implying that supervised learning will be the chosen method), unsupervised learning also has a role to play here. For example, unsupervised learning can identify clusters of similar data points, enabling the data to be re-represented in terms of more orthogonal features. This reduces the effective dimensionality of the data, enabling more concise data representation and supporting more accurate supervised learning.

Learning by immediate reward has been applied to robot control for a number of decades now. Using electronic circuits whose characteristics were altered through operant conditioning (instrumental learning), Walter, in the 1950s, had small mobile robots learn to move towards light sources ([Walter 50]). Using artificial neural networks, rather than electronic circuits as in Walter’s case, mobile robots have learned a variety of different tasks in addition to phototaxis, for example obstacle avoidance, wall following or box pushing ([Nehmzow 94]).

As we have seen, training feedback for control learning may be delayed (e.g., the reward is provided only at the end of a long sequence of actions leading to the goal), or immediate (e.g., the reward or desired action is provided at each step in the sequence leading to the goal). In general, it is more difficult to learn from delayed feedback because the system faces the credit assignment problem: how much did each action of the sequence of actions actually contribute towards accomplishing the desired goal (e.g., [Samuel 59, Connell & Mahadevan 93]). Standard ways of addressing this problem of learning by delayed rewards are the bucket brigade algorithm ([Samuel 59, Holland et al. 86] or Q-learning ([Watkins 89]). Some attempts have been made to make real robots learn from delayed rewards, but the number of training examples required is substantially more in this case, leading some researchers to turn to computer simulations ([Kaelbling 90]), and others to seek new methods to overcome this problem ([Sutton 90], [O’Sullivan et al. 95]).

5.4 The robot learning curriculum

Learning aims for lasting change in order to achieve a particular goal. It therefore requires a curriculum, an agenda of what is to be learned, and the order it is to be learned in.

Is it possible to identify a curriculum of robot learning?

At the bottom level, there is probably the learning of reflexive sensor-motor associations, expressed in competences such as obstacle avoidance, wall following, and following attractors. Competences at this level are state of the art in mobile robotics (see [Nehmzow 92] for a review). How to combine several fundamental competences to achieve more complicated tasks, how to identify components of plans and how to assemble them to form complete plans, must be elements of the robot learning curriculum.
Here is an attempt to define a curriculum of robot learning:

- Reflexive actions
- Attentive competences
 - Detection of salient features of the environment
 - Detection of correlation in perceptual patterns over time
 - Ability to focus attention
 - Differentiation between relevant and irrelevant events with respect to the current goals
- Identification of sequences of actions as plan components
- Planning capabilities
 - The assembly of plan components to plans
 - Planning of actions independent from their actual execution
 - Ability to modify or abandon plans
- Identification of macro-plan components, and
- their assembly to complex macro plans
- Cumulative learning
- Forming abstract concepts, and
- Integration of several of these levels into one system.

If the robot is to achieve arbitrary, user-defined goals there is the requirement for the robot to identify the accomplishment of a goal. Although robots can learn certain sensor-motor competences without any internal representation of goals, for example by some type of Hebbian learning through mere correlation of perceptions and actions, we argue that it is impossible to implement a learning robot controller that could learn any behaviour without explicitly specified goal states.

6 Learning Mechanisms

Because the emphasis of this paper is on making robots achieve certain user-defined goals the focus here is on supervised learning mechanisms, i.e. learning mechanisms that use an external reinforcement signal to control the learning process. One clear categorization of learning mechanisms in robotics we see is based on when this signal is received: immediately after an action is performed (immediate reward), or only after a sequence of actions has been performed (delayed reward).

If immediate reward is available, learning in robots can be achieved for example through operant conditioning (instrumental learning). In Grey Walter’s turtles of the 1950s ([Walter 50]) changing charges in a capacitor, according to learning rule using immediate feedback, led to light-seeking behaviour. Whilst Walter was dependent on electronic circuitry to implement his learning controller, and robots were therefore built for specific tasks, we now have controllers that allow a robot to acquire different tasks by merely redefining the reward function (see, for instance, [Nehmzow 92], for an overview).

Learning from immediate reward is the most effective way of learning. Competences such as phototaxis can be acquired within minutes by robots ([Nehmzow 94]). In some cases, however, immediate reward is not available. If the task has been described in such a way that reward is only obtained occasionally (i.e. upon reaching a goal state), the learning process becomes very ineffective.

Learning by trial and error from performance feedback, i.e. from feedback that evaluates behaviour, but does not indicate correct behaviour ([Sutton 91]) is the most accessible and most widely used method
of robot learning. This learning from scalar feedback, after having executed a particular action is called reinforcement learning.

The best known reinforcement learning architecture that allows learning from delayed rewards is Q-learning ([Watkins 89]. Here, as in the “Bucket Brigade” algorithm, reward is trickled backwards to all actions involved in reaching the goal position. Pairs of current state and possible action at any given moment are given a ‘Q-value’ (a probability of success). Therefore, what happens is that delayed reward is translated into immediate reward through the learning mechanism.

6.1 The phototaxis example

That learning from delayed rewards is slow can be seen in this example from robotics: suppose the goal were to build a light-seeking robot, and the performance of this robot was to be measured exclusively in terms of its light finding behaviour. If the task description awards positive reinforcement upon reaching the actual light source, the learning process is extremely slow in taking off, because initially all actions appear equally good to the robot, and the search space is enormous. [Kaelbling 90] has implemented such a system and reports that the learning process was so slow that she returned to simulations of her learning controller. If, on the other hand, the task description awards reward whenever the robot performs a move towards the currently brightest part of the room, learning is extremely fast and phototaxis is achieved within minutes ([Nehmzow 94]).纯粹 from a light-seeking performance point of view, the latter system is superior. The question is: can we learn from this example how to make learning from delayed rewards more effective?

One obvious way to improve the “translation” of delayed reward into immediate reward is that of improving the teacher (see figure 3). If, for example, the teacher has the ability to learn itself, it might be possible to build suitable models that allow immediate assignment of appropriate reward to the robot’s actions.

6.2 Advanced robot learning

The robot learning curriculum identified some higher level competences in learning robots. Here are some suggestions about how to move towards these more complex competences:

1. In addition to learning the robot control function \(State \rightarrow Action \), have the robot learn a forward prediction model \(State \times Action \rightarrow NextState \). Because this forward prediction model is task-independent knowledge, it can be used to improve the ability of the robot to learn strategies for new goals or tasks. For example, if this learned forward prediction model is perfectly correct and complete, it can be used to compute the control policy for a new goal simply by searching for a sequence of actions that leads to a goal state (i.e., traditional AI-style planning). More realistically, any learned forward prediction model is likely to be only partly correct. Even in this case it can be used to improve the accuracy of learning control policies for new goals. One method for accomplishing this is Explanation-based neural network (EBNN) learning, in which approximate, previously learned forward prediction models have been shown to significantly improve the accuracy of Q learning ([O’Sullivan et al. 95]).

2. Allow previously learned control behaviors to be used as primitive actions for subsequent learning. For example, imagine a robot with primitive actions Forward (d) and Turn (theta), that learns a control strategy for the goal “exit the room by going into the hallway” and a second control strategy for “traverse the hallway.” Given a third goal such as “navigate from room A to room B” it would be much easier to solve the goal by using these previously learned behaviors as primitive actions. This kind of hierarchical organization offers one possible route to scaling up robot learning to tasks of more realistic complexity. Recent attempts to develop such approaches include [Singh 93] and [Lin], but this remains an issue in need of further research.

It should be noted, though, that the purpose of Kaelbling’s system was not primarily to build a light-seeking robot, but to investigate learning from delayed rewards.
3. Temporal aspects as well as perceptual ones need to be represented in the controller, for instance by constructing rich internal states from the temporal sequence of perceptions (dynamic robot learning). There is a similarity here to early research in computer vision: it became eventually clear how difficult it is to identify an object using a single frame, whilst the task became much simpler through using sequences of images ([Dickmanns & Graefe 88], p.4f). ‘Active vision’ is a further advancement of this idea, the vision system now being able to control the focus of attention as well. Similarly, it is a hard task to identify particular world states from one observation, but using temporal knowledge and active sensing the task can be made easier.

4. Anticipation and prediction, Anticipation surprise/novelty detection both in temporal sequences and in single perceptions are needed to achieve the necessary sensor acuity. The more complex task, robot and environment are, the higher will be the demand on computing resources. One way to tackle this problem is to focus attention even before sensor signals are obtained, i.e. select the signals that are to be processed further, rather than take all data and analyze afterwards. This principle has successful been used in vehicle road following ([Dickmanns & Graefe 88]).

5. In order to make plans of whole sequences of actions, the controller needs to be able to generate sub-goals. Schmidthuber and Wahnsiedler ([Schmidthuber & Wahnsiedler 92]) address the problem of “compositional neural sequence learning” in a path-planning simulation, in which a path of minimal cost has to be found if previous paths and their costs are known.

7 Open Questions
We identify the following areas as problems that require further investigation.

7.1 Task Description
In the phototaxis example (section 6.1) it became apparent how different task descriptions (reward when reaching the light versus reward when turning towards the brightest spot) resulted in drastically different performance. Defining a task description is still much of a black art, and dependent on the designer’s ingenuity. Mechanisms (algorithms) to establish optimal task descriptions are as yet lacking, but are needed if autonomous adaptation of the teacher, as proposed in section 6.1, is desired.

7.1.1 Learning from delayed rewards
Current machine learning paradigms that allow learning from delayed rewards let discounted reward trickle backwards to reinforce all actions that led to the final, successful action ([Watkins 89, Samuel 59, Holland et al. 86]).

Propagating reward back in this manner to achieve sequential robot learning introduces a number of problems. Firstly, the state space in which the robot operates needs to be discretized. This is not trivial, as too fine a scale will introduce much redundant data, whilst too coarse a scale will miss necessary detail. Scenarios are conceivable in which the success or failure of a learning robot is dependent on the correct scale, so that in this case one could argue that the problem has shifted from one of finding the right learning paradigm to one of finding the right scale.

Secondly, Q-learning ([Watkins 89]) requires the agent to encounter all possible states infinitely often to be guaranteed to find the optimal learning strategy — a prerequisite that is impractical.

Thirdly, not all actions that form part of a sequence do necessarily contribute towards the eventual success of the agent. Some actions may be completely unrelated to success, and therefore ought not to receive any positive (or negative) reinforcement.

The question is: can we find better ways to learn from delayed rewards (such as developing concepts about the world, task, and agent, and using these to attribute reward and punishment)?
This is the (difficult) credit assignment problem ([Connell & Mahadevan 93]). Temporal credit assignment is the hard part here: which actions of a sequence of actions were instrumental in reaching a goal state, and should therefore be reinforced? The standard way of solving the temporal credit assignment problem is the bucket brigade algorithm or variants of it: the state immediately preceding a goal state is reinforced. In a subsequent epoch, the state immediately preceding this state is reinforced, and so on ([Samuel 59, Holland et al. 86]). This method has the obvious disadvantage of being slow and requiring frequent repetition of the same series of actions, furthermore there is no guarantee that a particular sequence learned is actually a good one (let alone optimal).

How to avoid these problems, how to attribute reinforcement based on delayed rewards in a more efficient manner is an open question.

7.1.2 Modification of the reward function through learning

Consider a controller like the one given in figure 3. The relationship between learner and teacher is an intricate one and determines the performance of the whole controller. Although it is conceivable that the learner acquires competences that are not explicitly taught by the teacher (see, for instance, the dead-end example of section 4), the teacher plays an important part regarding the possible complexity of acquired control function. Therefore, it might be beneficial to have an adaptable teacher as well as an adaptable learner. The questions are: how can it be decided in a particular situation whether the learner or the teacher should be modified, and how can we determine in what way to modify the teacher, should this be the chosen action?

In the phototaxis example (see section 6.1) it became clear that the method of providing reinforcement made the greatest difference to the robot's performance. Providing immediate reward rather than delayed reward, robots learn phototaxis very quickly indeed. The research issue here is: how can the teacher be trained to convert delayed reward into immediate reward?

7.2 Concept learning

Correlation between actions

In learning from delayed rewards, we may require the development of internal concepts that allow the machine to attribute reward and punishment, following delayed reward (see above). The question is: what is such a concept, and how can it be developed? Such a concept would have to determine whether temporarily disjunct actions are related or not.

Feature recognition

One aspect of concept formation is the differentiation between salient features and dynamical features of the environment, both in terms of temporal patterns and perceptual patterns. Anticipation and prediction (i.e. some sort of generalization) can be useful mechanisms here (see [O'Sullivan et al. 95] for an example of an explanation based learning system on a mobile robot).

Macro learning and planning

In order to move towards complex functions, fundamental building blocks of such functions need to be identified, and subsequently assembled. The questions are: how can the learning controller identify fundamental building blocks, and how can it assembly these to form (various) complex plans? (See [Singh 92] for an example of how concatenating elemental sequential decision tasks leads to more complex sequential decision tasks. See also [Lin]).

7.3 Dynamic robot learning

The robot learning problem must not be viewed statically. The robot should not 1) obtain a sensory perception, 2) process the data and 3) make a decision to perform an action (sense-think-act cycle).
The interaction between robot and environment is a dynamic one, in which sequences of perceptions and sequences of events should determine future actions. An example from the area of navigation illustrates this point: room 3601B at Carnegie Mellon University is an open plan office with lots of identical cubicles. The identification of one's location based on the current sensory perception alone is impossible. Considering a sequence of previous actions (moves), however, it is no problem any more to establish one's current position.

Like in computer vision, a temporal sequence of perceptions provides more information about the environment than a single observation ([Dickmanns & Graefe 88]). It is one of the yet unachieved goals of robot learning to develop a learning architecture that allows the robot to learn from complete temporal sequences of perceptions, rather than from single perceptions.

7.4 Validation

If learning robot controllers are to be used outside the experimental laboratory scenario, validation of the robot's behaviour is needed. Such validation needs to answer these questions: Under what circumstances will the robot leave safe operational limits? Under what circumstances will the robot act in a goal-oriented way, and can it be proven that the robot will achieve the goal under these circumstances?

8 Summary

To make a mobile robot (such as the one shown in figure 1) achieve certain goals (specified by the user) in a particular environment, it may be sufficient to use fixed control strategies, as long as the tasks are relatively simple.

Due to the problem of perceptual discrepancy designing such controllers becomes increasingly difficult as the complexity of tasks increases (complexity here is seen with respect to the robot learning curriculum outlined on page 8). This is why we believe that for complex tasks learning robot controllers have to be used.

The thesis of this paper can be summarized by the following three statements: In order to achieve tasks in mobile robot control that go beyond fundamental reflexive responses to sensory stimuli, we need to

1. use learning controllers, because the problem of perceptual discrepancy gains in influence as the complexity of tasks increases,

2. consider both perceptual and temporal aspects of the robot-environment interaction, and

3. utilize high level competences like prediction, feature detection (correlation in perceptual and temporal streams of data), and concept formation.

Using a classical reinforcement learning architecture, we believe that this gain in complexity cannot be achieved by altering the learner alone (for instance by developing new learning paradigms), but has to concentrate on adaptable teachers (i.e. an adaptable reinforcement function) as well.

Acknowledgements

Thank you to Andreas Bühlmeier, Peter Ross, Reid Simmons and Sebastian Thrun for comments on this paper.

Thank you to Ian Pratt for reviewing this paper and his helpful comments.
References

